López-Alonso Jorge Pedro, Kaminishi Tatsuya, Kikuchi Takeshi, Hirata Yuya, Iturrioz Idoia, Dhimole Neha, Schedlbauer Andreas, Hase Yoichi, Goto Simon, Kurita Daisuke, Muto Akira, Zhou Shu, Naoe Chieko, Mills Deryck J, Gil-Carton David, Takemoto Chie, Himeno Hyouta, Fucini Paola, Connell Sean R
Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.
Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan.
Nucleic Acids Res. 2017 Jun 20;45(11):6945-6959. doi: 10.1093/nar/gkx324.
During 30S ribosomal subunit biogenesis, assembly factors are believed to prevent accumulation of misfolded intermediate states of low free energy that slowly convert into mature 30S subunits, namely, kinetically trapped particles. Among the assembly factors, the circularly permuted GTPase, RsgA, plays a crucial role in the maturation of the 30S decoding center. Here, directed hydroxyl radical probing and single particle cryo-EM are employed to elucidate RsgA΄s mechanism of action. Our results show that RsgA destabilizes the 30S structure, including late binding r-proteins, providing a structural basis for avoiding kinetically trapped assembly intermediates. Moreover, RsgA exploits its distinct GTPase pocket and specific interactions with the 30S to coordinate GTPase activation with the maturation state of the 30S subunit. This coordination validates the architecture of the decoding center and facilitates the timely release of RsgA to control the progression of 30S biogenesis.
在30S核糖体亚基生物合成过程中,组装因子被认为可防止低自由能的错误折叠中间态积累,这些中间态会缓慢转化为成熟的30S亚基,即动力学捕获颗粒。在组装因子中,环状排列的GTP酶RsgA在30S解码中心的成熟过程中起关键作用。在此,采用定向羟基自由基探测和单颗粒冷冻电镜来阐明RsgA的作用机制。我们的结果表明,RsgA会破坏30S结构的稳定性,包括后期结合的核糖体蛋白,为避免动力学捕获的组装中间体提供了结构基础。此外,RsgA利用其独特的GTP酶口袋以及与30S的特定相互作用,将GTP酶激活与30S亚基的成熟状态相协调。这种协调验证了解码中心的结构,并促进RsgA的及时释放,以控制30S生物合成的进程。