Narayanan Chitra, Bafna Khushboo, Roux Louise D, Agarwal Pratul K, Doucet Nicolas
INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada.
Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.
Arch Biochem Biophys. 2017 Aug 15;628:71-80. doi: 10.1016/j.abb.2017.05.002. Epub 2017 May 5.
Overwhelming evidence now illustrates the defining role of atomic-scale protein flexibility in biological events such as allostery, cell signaling, and enzyme catalysis. Over the years, spin relaxation nuclear magnetic resonance (NMR) has provided significant insights on the structural motions occurring on multiple time frames over the course of a protein life span. The present review article aims to illustrate to the broader community how this technique continues to shape many areas of protein science and engineering, in addition to being an indispensable tool for studying atomic-scale motions and functional characterization. Continuing developments in underlying NMR technology alongside software and hardware developments for complementary computational approaches now enable methodologies to routinely provide spatial directionality and structural representations traditionally harder to achieve solely using NMR spectroscopy. In addition to its well-established role in structural elucidation, we present recent examples that illustrate the combined power of selective isotope labeling, relaxation dispersion experiments, chemical shift analyses, and computational approaches for the characterization of conformational sub-states in proteins and enzymes.
大量证据表明,原子尺度的蛋白质灵活性在诸如别构效应、细胞信号传导和酶催化等生物过程中起着决定性作用。多年来,自旋弛豫核磁共振(NMR)为蛋白质生命周期中多个时间尺度上发生的结构运动提供了重要见解。本综述文章旨在向更广泛的群体说明,除了作为研究原子尺度运动和功能表征的不可或缺的工具外,该技术如何继续塑造蛋白质科学和工程的许多领域。随着基础NMR技术的不断发展以及用于补充计算方法的软件和硬件的开发,现在的方法能够常规地提供空间方向性和结构表示,而这些传统上仅使用NMR光谱法很难实现。除了其在结构解析中已确立的作用外,我们还展示了最近的一些例子,这些例子说明了选择性同位素标记、弛豫色散实验、化学位移分析和计算方法相结合在表征蛋白质和酶的构象亚态方面的强大功能。