Suppr超能文献

核磁共振(NMR)和计算方法在研究蛋白质动力学中的应用。

Applications of NMR and computational methodologies to study protein dynamics.

作者信息

Narayanan Chitra, Bafna Khushboo, Roux Louise D, Agarwal Pratul K, Doucet Nicolas

机构信息

INRS-Institut Armand-Frappier, Université du Québec, 531 Boul. des Prairies, Laval, QC H7V 1B7, Canada.

Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA.

出版信息

Arch Biochem Biophys. 2017 Aug 15;628:71-80. doi: 10.1016/j.abb.2017.05.002. Epub 2017 May 5.

Abstract

Overwhelming evidence now illustrates the defining role of atomic-scale protein flexibility in biological events such as allostery, cell signaling, and enzyme catalysis. Over the years, spin relaxation nuclear magnetic resonance (NMR) has provided significant insights on the structural motions occurring on multiple time frames over the course of a protein life span. The present review article aims to illustrate to the broader community how this technique continues to shape many areas of protein science and engineering, in addition to being an indispensable tool for studying atomic-scale motions and functional characterization. Continuing developments in underlying NMR technology alongside software and hardware developments for complementary computational approaches now enable methodologies to routinely provide spatial directionality and structural representations traditionally harder to achieve solely using NMR spectroscopy. In addition to its well-established role in structural elucidation, we present recent examples that illustrate the combined power of selective isotope labeling, relaxation dispersion experiments, chemical shift analyses, and computational approaches for the characterization of conformational sub-states in proteins and enzymes.

摘要

大量证据表明,原子尺度的蛋白质灵活性在诸如别构效应、细胞信号传导和酶催化等生物过程中起着决定性作用。多年来,自旋弛豫核磁共振(NMR)为蛋白质生命周期中多个时间尺度上发生的结构运动提供了重要见解。本综述文章旨在向更广泛的群体说明,除了作为研究原子尺度运动和功能表征的不可或缺的工具外,该技术如何继续塑造蛋白质科学和工程的许多领域。随着基础NMR技术的不断发展以及用于补充计算方法的软件和硬件的开发,现在的方法能够常规地提供空间方向性和结构表示,而这些传统上仅使用NMR光谱法很难实现。除了其在结构解析中已确立的作用外,我们还展示了最近的一些例子,这些例子说明了选择性同位素标记、弛豫色散实验、化学位移分析和计算方法相结合在表征蛋白质和酶的构象亚态方面的强大功能。

相似文献

1
Applications of NMR and computational methodologies to study protein dynamics.
Arch Biochem Biophys. 2017 Aug 15;628:71-80. doi: 10.1016/j.abb.2017.05.002. Epub 2017 May 5.
2
Enzyme dynamics from NMR spectroscopy.
Acc Chem Res. 2015 Feb 17;48(2):457-65. doi: 10.1021/ar500340a. Epub 2015 Jan 9.
3
Probing protein dynamics by nuclear magnetic resonance.
Protein Pept Lett. 2011 Apr;18(4):373-9. doi: 10.2174/092986611794653897.
4
Solution NMR views of dynamical ordering of biomacromolecules.
Biochim Biophys Acta Gen Subj. 2018 Feb;1862(2):287-306. doi: 10.1016/j.bbagen.2017.08.020. Epub 2017 Aug 25.
6
Resolving biomolecular motion and interactions by R and R relaxation dispersion NMR.
Methods. 2018 Sep 15;148:28-38. doi: 10.1016/j.ymeth.2018.04.026. Epub 2018 Apr 26.
7
Protein dynamics detected by magic-angle spinning relaxation dispersion NMR.
Curr Opin Struct Biol. 2023 Oct;82:102660. doi: 10.1016/j.sbi.2023.102660. Epub 2023 Aug 1.
8
Advances in solid-state relaxation methodology for probing site-specific protein dynamics.
Acc Chem Res. 2013 Sep 17;46(9):2018-27. doi: 10.1021/ar300334g. Epub 2013 Apr 26.
10
Probing conformational dynamics in biomolecules via chemical exchange saturation transfer: a primer.
J Biomol NMR. 2017 Apr;67(4):243-271. doi: 10.1007/s10858-017-0099-4. Epub 2017 Mar 19.

引用本文的文献

1
Parsing Dynamics of Protein Backbone NH and Side-Chain Methyl Groups using Molecular Dynamics Simulations.
J Chem Theory Comput. 2024 Jul 23;20(14):6316-6327. doi: 10.1021/acs.jctc.4c00378. Epub 2024 Jul 3.
2
Experimental methods to study the structure and dynamics of intrinsically disordered regions in proteins.
Curr Res Struct Biol. 2024 Mar 21;7:100138. doi: 10.1016/j.crstbi.2024.100138. eCollection 2024.
3
Toward a molecular mechanism for the interaction of ATP with alpha-synuclein.
Chem Sci. 2023 Aug 26;14(36):9933-9942. doi: 10.1039/d3sc03612j. eCollection 2023 Sep 20.
4
Structural and Dynamic Effects of PTEN C-Terminal Tail Phosphorylation.
J Chem Inf Model. 2022 Sep 12;62(17):4175-4190. doi: 10.1021/acs.jcim.2c00441. Epub 2022 Aug 24.
5
How to assess the structural dynamics of transcription factors by integrating sparse NMR and EPR constraints with molecular dynamics simulations.
Comput Struct Biotechnol J. 2021 Apr 21;19:2097-2105. doi: 10.1016/j.csbj.2021.04.020. eCollection 2021.
6
Enzyme dynamics: Looking beyond a single structure.
ChemCatChem. 2020 Oct 6;12(19):4704-4720. doi: 10.1002/cctc.202000665. Epub 2020 Jun 26.
7
The Role of Conformational Dynamics in the Recognition and Regulation of Ubiquitination.
Molecules. 2020 Dec 15;25(24):5933. doi: 10.3390/molecules25245933.
8
Combining Experimental Data and Computational Methods for the Non-Computer Specialist.
Molecules. 2020 Oct 18;25(20):4783. doi: 10.3390/molecules25204783.
9
Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning.
Front Mol Biosci. 2020 Jul 9;7:136. doi: 10.3389/fmolb.2020.00136. eCollection 2020.
10
Integrated Computational Approaches and Tools forAllosteric Drug Discovery.
Int J Mol Sci. 2020 Jan 28;21(3):847. doi: 10.3390/ijms21030847.

本文引用的文献

1
Role of Conformational Motions in Enzyme Function: Selected Methodologies and Case Studies.
Catalysts. 2016 Jun;6(6). doi: 10.3390/catal6060081. Epub 2016 May 27.
2
Flexibility in the Periplasmic Domain of BamA Is Important for Function.
Structure. 2017 Jan 3;25(1):94-106. doi: 10.1016/j.str.2016.11.013. Epub 2016 Dec 15.
3
Allosteric Communication Disrupted by a Small Molecule Binding to the Imidazole Glycerol Phosphate Synthase Protein-Protein Interface.
Biochemistry. 2016 Nov 29;55(47):6484-6494. doi: 10.1021/acs.biochem.6b00859. Epub 2016 Nov 11.
4
Enhancing the Sensitivity of CPMG Relaxation Dispersion to Conformational Exchange Processes by Multiple-Quantum Spectroscopy.
Angew Chem Int Ed Engl. 2016 Sep 12;55(38):11490-4. doi: 10.1002/anie.201605843. Epub 2016 Aug 16.
5
Conformational Sub-states and Populations in Enzyme Catalysis.
Methods Enzymol. 2016;578:273-97. doi: 10.1016/bs.mie.2016.05.023. Epub 2016 Jul 9.
6
Ligand Binding Enhances Millisecond Conformational Exchange in Xylanase B2 from Streptomyces lividans.
Biochemistry. 2016 Aug 2;55(30):4184-96. doi: 10.1021/acs.biochem.6b00130. Epub 2016 Jul 21.
7
Isotope-labeling strategies for solution NMR studies of macromolecular assemblies.
Curr Opin Struct Biol. 2016 Jun;38:75-82. doi: 10.1016/j.sbi.2016.05.008. Epub 2016 Jun 10.
8
Quantitative measurement of exchange dynamics in proteins via (13)C relaxation dispersion of (13)CHD2-labeled samples.
J Biomol NMR. 2016 Jun;65(2):59-64. doi: 10.1007/s10858-016-0038-9. Epub 2016 Jun 1.
9
Dissecting Dynamic Allosteric Pathways Using Chemically Related Small-Molecule Activators.
Structure. 2016 Jul 6;24(7):1155-66. doi: 10.1016/j.str.2016.04.010. Epub 2016 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验