Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, United States.
Department of Computational and Systems Biology, University of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, United States.
J Chem Inf Model. 2022 Sep 12;62(17):4175-4190. doi: 10.1021/acs.jcim.2c00441. Epub 2022 Aug 24.
The phosphatase and tensin homologue deleted on chromosome 10 () tumor suppressor gene encodes a tightly regulated dual-specificity phosphatase that serves as the master regulator of PI3K/AKT/mTOR signaling. The carboxy-terminal tail (CTT) is key to regulation and harbors multiple phosphorylation sites (Ser/Thr residues 380-385). CTT phosphorylation suppresses the phosphatase activity by inducing a stable, closed conformation. However, little is known about the mechanisms of phosphorylation-induced CTT-deactivation dynamics. Using explicit solvent microsecond molecular dynamics simulations, we show that CTT phosphorylation leads to a partially collapsed conformation, which alters the secondary structure of PTEN and induces long-range conformational rearrangements that encompass the active site. The active site rearrangements prevent localization of PTEN to the membrane, precluding lipid phosphatase activity. Notably, we have identified phosphorylation-induced allosteric coupling between the interdomain region and a hydrophobic site neighboring the active site in the phosphatase domain. Collectively, the results provide a mechanistic understanding of CTT phosphorylation dynamics and reveal potential druggable allosteric sites in a previously believed clinically undruggable protein.
10 号染色体缺失的磷酸酶和张力蛋白同系物 () 肿瘤抑制基因编码一种紧密调节的双特异性磷酸酶,作为 PI3K/AKT/mTOR 信号的主要调节剂。羧基末端尾巴 (CTT) 是调节的关键,并且具有多个磷酸化位点(Ser/Thr 残基 380-385)。CTT 磷酸化通过诱导稳定的封闭构象来抑制磷酸酶活性。然而,关于磷酸化诱导的 CTT 失活动力学的机制知之甚少。使用显式溶剂微秒分子动力学模拟,我们表明 CTT 磷酸化导致部分塌陷构象,这改变了 PTEN 的二级结构并诱导包含活性位点的远程构象重排。活性位点的重排阻止了 PTEN 向膜的定位,从而阻止了脂质磷酸酶的活性。值得注意的是,我们已经确定了磷酸化诱导的结构域间区域和磷酸酶结构域中靠近活性位点的疏水位点之间的变构偶联。总之,这些结果提供了对 CTT 磷酸化动力学的机制理解,并揭示了先前认为在临床上无法成药的蛋白质中的潜在可成药的变构位点。