Vazquez-Muñoz Roberto, Borrego Belen, Juárez-Moreno Karla, García-García Maritza, Mota Morales Josué D, Bogdanchikova Nina, Huerta-Saquero Alejandro
Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 Carretera Tijuana-Ensenada, CP 22860, Ensenada, Baja California, Mexico; Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Tijuana-Ensenada 3918, CP 22860, Ensenada, Baja California, Mexico.
Centro de Investigación en Sanidad Animal, INIA (National Research Institute for Agricultural and Food Technology), Carretera Algete el Casar s/n, 28130, Valdeolmos, Madrid, Spain.
Toxicol Lett. 2017 Jul 5;276:11-20. doi: 10.1016/j.toxlet.2017.05.007. Epub 2017 May 5.
Currently, nanomaterials are more frequently in our daily life, specifically in biomedicine, electronics, food, textiles and catalysis just to name a few. Although nanomaterials provide many benefits, recently their toxicity profiles have begun to be explored. In this work, the toxic effects of silver nanoparticles (35nm-average diameter and Polyvinyl-Pyrrolidone-coated) on biological systems of different levels of complexity was assessed in a comprehensive and comparatively way, through a variety of viability and toxicological assays. The studied organisms included viruses, bacteria, microalgae, fungi, animal and human cells (including cancer cell lines). It was found that biological systems of different taxonomical groups are inhibited at concentrations of silver nanoparticles within the same order of magnitude. Thus, the toxicity of nanomaterials on biological/living systems, constrained by their complexity, e.g. taxonomic groups, resulted contrary to the expected. The fact that cells and virus are inhibited with a concentration of silver nanoparticles within the same order of magnitude could be explained considering that silver nanoparticles affects very primitive cellular mechanisms by interacting with fundamental structures for cells and virus alike.
目前,纳米材料在我们日常生活中出现得越来越频繁,特别是在生物医学、电子、食品、纺织品和催化等领域,这里仅列举几个。尽管纳米材料带来诸多益处,但最近它们的毒性特征已开始被研究。在这项工作中,通过各种活力和毒理学测定,以全面且相对比的方式评估了平均直径为35纳米且包覆聚乙烯吡咯烷酮的银纳米颗粒对不同复杂程度生物系统的毒性作用。所研究的生物体包括病毒、细菌、微藻、真菌、动物和人类细胞(包括癌细胞系)。研究发现,不同分类群的生物系统在银纳米颗粒浓度处于同一数量级时会受到抑制。因此,纳米材料对生物/生命系统的毒性,受其复杂性(如分类群)的限制,结果与预期相反。考虑到银纳米颗粒通过与细胞和病毒的基本结构相互作用影响非常原始的细胞机制,细胞和病毒在银纳米颗粒浓度处于同一数量级时受到抑制这一事实就可以得到解释。