Ummenhofer Caroline C, Meehl Gerald A
Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
NCAR Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO 80307-3000, USA.
Philos Trans R Soc Lond B Biol Sci. 2017 Jun 19;372(1723). doi: 10.1098/rstb.2016.0135.
Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'.
有充分的证据表明,某些极端天气和气候事件,特别是日温度和降水极端事件,在近几十年中,其强度和频率已经发生了变化。这些变化与人为引起的气候变化有关,而气候变化对单个极端气候事件(ECE)的影响程度则更难量化。最近,通过对观测和模拟的气候变率、事件归因方法以及数值建模的进展有了更好的理解,事件归因方面取得了迅速进展。与其他事件类型相比,极端温度事件的归因更为有力,特别是那些与水文循环有关的事件。最近在对极端气候事件的理解方面取得的进展,无论是在观测方面还是在最先进的气候模型中的表现方面,都为评估它们对人类和自然系统的影响提供了新的机会。全球气候模型中空间分辨率的提高以及统计和动力降尺度方面的进展,现在可以在适当的空间和时间尺度上提供气候信息。随着地球系统模型的不断发展,这些模型越来越复杂地模拟生物地球化学循环以及与生物圈的相互作用,这使得我们有可能对极端气候事件如何影响生物过程、生态系统功能和适应能力形成一种机制性的理解。观测网络在物理气候系统参数方面的局限性,甚至在长期生态监测方面更是如此,阻碍了我们在理解跨尺度生物物理相互作用方面的进展。对极端气候事件的更好科学理解,再加上观测系统和仪器技术的进步,为评估极端气候事件如何调节生态系统结构和功能带来了新的机会。本文是主题为“对极端气候事件的行为、生态和进化反应”的特刊的一部分。