Suppr超能文献

基于近红外光响应的脂质体纳米探针用于光声炎症成像和肿瘤治疗,并通过体内比色法进行评估。

HO-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay.

机构信息

Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.

Department of Pediatric Research, Children's Hospital of Soochow University, Suzhou, Jiangsu 215123, China.

出版信息

Proc Natl Acad Sci U S A. 2017 May 23;114(21):5343-5348. doi: 10.1073/pnas.1701976114. Epub 2017 May 8.

Abstract

Abnormal HO levels are closely related to many diseases, including inflammation and cancers. Herein, we simultaneously load HRP and its substrate, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), into liposomal nanoparticles, obtaining a Lipo@HRP&ABTS optical nanoprobe for in vivo HO-responsive chromogenic assay with great specificity and sensitivity. In the presence of HO, colorless ABTS would be converted by HRP into the oxidized form with strong near-infrared (NIR) absorbance, enabling photoacoustic detection of HO down to submicromolar concentrations. Using Lipo@HRP&ABTS as an HO-responsive nanoprobe, we could accurately detect the inflammation processes induced by LPS or bacterial infection in which HO is generated. Meanwhile, upon systemic administration of this nanoprobe we realize in vivo photoacoustic imaging of small s.c. tumors (∼2 mm in size) as well as orthotopic brain gliomas, by detecting HO produced by tumor cells. Interestingly, local injection of Lipo@HRP&ABTS further enables differentiation of metastatic lymph nodes from those nonmetastatic ones, based on their difference in HO contents. Moreover, using the HO-dependent strong NIR absorbance of Lipo@HRP&ABTS, tumor-specific photothermal therapy is also achieved. This work thus develops a sensitive HO-responsive optical nanoprobe useful not only for in vivo detection of inflammation but also for tumor-specific theranostic applications.

摘要

异常的 HO 水平与许多疾病密切相关,包括炎症和癌症。在此,我们同时将 HRP 及其底物 2,2'-联氮双(3-乙基苯并噻唑啉-6-磺酸)(ABTS)载入脂质体纳米颗粒中,得到 Lipo@HRP&ABTS 光学纳米探针,用于体内 HO 响应比色测定,具有很高的特异性和灵敏度。在 HO 的存在下,无色的 ABTS 会被 HRP 转化为具有强近红外(NIR)吸收的氧化形式,从而能够对 HO 进行亚微摩尔浓度的光声检测。使用 Lipo@HRP&ABTS 作为 HO 响应性纳米探针,我们可以准确地检测由 LPS 或细菌感染引起的炎症过程,其中会产生 HO。同时,通过系统给予这种纳米探针,我们可以通过检测肿瘤细胞产生的 HO,实现对皮下小肿瘤(大小约 2 毫米)以及原位脑胶质瘤的体内光声成像。有趣的是,局部注射 Lipo@HRP&ABTS 还可以根据淋巴结中 HO 含量的不同,区分转移性和非转移性淋巴结。此外,还可以利用 Lipo@HRP&ABTS 依赖 HO 的强近红外吸收,实现肿瘤特异性光热治疗。因此,这项工作开发了一种灵敏的 HO 响应光学纳米探针,不仅可用于体内炎症的检测,还可用于肿瘤特异性治疗应用。

相似文献

1
HO-responsive liposomal nanoprobe for photoacoustic inflammation imaging and tumor theranostics via in vivo chromogenic assay.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5343-5348. doi: 10.1073/pnas.1701976114. Epub 2017 May 8.
3
4
Exosome-like Nanozyme Vesicles for HO-Responsive Catalytic Photoacoustic Imaging of Xenograft Nasopharyngeal Carcinoma.
Nano Lett. 2019 Jan 9;19(1):203-209. doi: 10.1021/acs.nanolett.8b03709. Epub 2018 Dec 14.
6
Bimetallic Oxide MnMoO Nanorods for in Vivo Photoacoustic Imaging of GSH and Tumor-Specific Photothermal Therapy.
Nano Lett. 2018 Sep 12;18(9):6037-6044. doi: 10.1021/acs.nanolett.8b02933. Epub 2018 Aug 27.
7
A Redox-Responsive Self-Assembled Nanoprobe for Photoacoustic Inflammation Imaging to Assess Atherosclerotic Plaque Vulnerability.
Anal Chem. 2019 Jan 2;91(1):1150-1156. doi: 10.1021/acs.analchem.8b04912. Epub 2018 Dec 12.
10
Photoacoustic imaging of tumor targeting with riboflavin-functionalized theranostic nanocarriers.
Int J Nanomedicine. 2017 May 18;12:3813-3825. doi: 10.2147/IJN.S125192. eCollection 2017.

引用本文的文献

2
Bioactive metallic nanoparticles for synergistic cancer immunotherapy.
Acta Pharm Sin B. 2025 Apr;15(4):1869-1911. doi: 10.1016/j.apsb.2025.02.022. Epub 2025 Feb 21.
3
Novel Strategy for Optimized Nanocatalytic Tumor Therapy: From an Updated View.
Small Sci. 2022 Jun 3;2(7):2200024. doi: 10.1002/smsc.202200024. eCollection 2022 Jul.
4
Advances in Tracing Techniques: Mapping the Trajectory of Mesenchymal Stem-Cell-Derived Extracellular Vesicles.
Chem Biomed Imaging. 2025 Feb 2;3(3):137-168. doi: 10.1021/cbmi.4c00085. eCollection 2025 Mar 24.
5
Photoacoustic Imaging in Inflammatory Orthopedic Diseases: Progress toward Precise Diagnostics and Predictive Regulation.
Adv Sci (Weinh). 2025 Apr;12(14):e2412745. doi: 10.1002/advs.202412745. Epub 2025 Feb 28.
6
NIR-II-excited off-on-off fluorescent nanoprobes for sensitive molecular imaging in vivo.
Nat Commun. 2025 Jan 2;16(1):278. doi: 10.1038/s41467-024-55096-y.
7
Targeting the tumor microenvironment with biomaterials for enhanced immunotherapeutic efficacy.
J Nanobiotechnology. 2024 Nov 27;22(1):737. doi: 10.1186/s12951-024-03005-2.
9
Nanotechnology based gas delivery system: a "green" strategy for cancer diagnosis and treatment.
Theranostics. 2024 Aug 26;14(14):5461-5491. doi: 10.7150/thno.98884. eCollection 2024.
10
Nanomedicine-based cancer immunotherapy: a bibliometric analysis of research progress and prospects.
Front Immunol. 2024 Aug 23;15:1446532. doi: 10.3389/fimmu.2024.1446532. eCollection 2024.

本文引用的文献

1
Increased Gold Nanoparticle Retention in Brain Tumors by in Situ Enzyme-Induced Aggregation.
ACS Nano. 2016 Nov 22;10(11):10086-10098. doi: 10.1021/acsnano.6b05070. Epub 2016 Nov 11.
5
A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging.
Theranostics. 2016 Mar 11;6(5):688-97. doi: 10.7150/thno.14555. eCollection 2016.
6
Iminoboronate-Based Peptide Cyclization That Responds to pH, Oxidation, and Small Molecule Modulators.
J Am Chem Soc. 2016 Feb 24;138(7):2098-101. doi: 10.1021/jacs.5b12301. Epub 2016 Feb 12.
7
A Self-Assembled Albumin-Based Nanoprobe for In Vivo Ratiometric Photoacoustic pH Imaging.
Adv Mater. 2015 Nov 18;27(43):6820-7. doi: 10.1002/adma.201503194. Epub 2015 Sep 29.
8
9
Tumor metastasis inhibition by imaging-guided photothermal therapy with single-walled carbon nanotubes.
Adv Mater. 2014 Aug 27;26(32):5646-52. doi: 10.1002/adma.201401825. Epub 2014 Jun 13.
10
Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging.
Chem Soc Rev. 2014 Sep 21;43(18):6570-97. doi: 10.1039/c4cs00014e.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验