Pohlman John W, Greinert Jens, Ruppel Carolyn, Silyakova Anna, Vielstädte Lisa, Casso Michael, Mienert Jürgen, Bünz Stefan
U.S. Geological Survey, Woods Hole Coastal & Marine Science Center, Woods Hole, MA 02543;
Department of Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research, D-24148 Kiel, Germany.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5355-5360. doi: 10.1073/pnas.1618926114. Epub 2017 May 8.
Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 10 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (<100 m water depth), methane released from the seafloor may reach the atmosphere and potentially amplify global warming. On the other hand, biological uptake of carbon dioxide (CO) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea-air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO uptake rates (-33,300 ± 7,900 μmol m⋅d) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea-air methane efflux (17.3 ± 4.8 μmol m⋅d). The negative radiative forcing expected from this CO uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of C in CO) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea-air methane flux always increase the global atmospheric greenhouse gas burden.
预计在未来几十年里,北冰洋持续变暖将引发浅大陆架海底永久冻土融化释放出数太克(1太克 = 10吨)的甲烷,以及大陆坡上部甲烷水合物的分解。在浅大陆架(水深小于100米),从海底释放的甲烷可能会进入大气,进而可能加剧全球变暖。另一方面,二氧化碳(CO₂)的生物吸收有可能抵消排放甲烷的正变暖潜力,而这一过程在这些环境中尚未得到详细研究。在斯瓦尔巴德边缘一个浅的冒泡甲烷渗漏场收集的连续海 - 气通量数据显示,大气对CO₂的吸收速率(-33300 ± 7900微摩尔/米²·天)是周围海水的两倍,约是扩散性海 - 气甲烷通量(17.3 ± 4.8微摩尔/米²·天)的1900倍。这种CO₂吸收预期产生的负辐射强迫比甲烷排放产生的正辐射强迫大231倍。表层水特征(例如,高溶解氧、高pH值和CO₂中¹³C的富集)表明,富含营养的冷水从海底附近上涌伴随着甲烷排放,并刺激光合浮游植物消耗CO₂。这些发现挑战了一种广泛持有的观念,即那些以浅水甲烷渗漏和/或强烈升高的海 - 气甲烷通量为特征的区域总是会增加全球大气温室气体负担。