Suppr超能文献

北冰洋浅层渗漏区增强的一氧化碳吸收量超过了排放甲烷的正变暖潜力。

Enhanced CO uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane.

作者信息

Pohlman John W, Greinert Jens, Ruppel Carolyn, Silyakova Anna, Vielstädte Lisa, Casso Michael, Mienert Jürgen, Bünz Stefan

机构信息

U.S. Geological Survey, Woods Hole Coastal & Marine Science Center, Woods Hole, MA 02543;

Department of Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research, D-24148 Kiel, Germany.

出版信息

Proc Natl Acad Sci U S A. 2017 May 23;114(21):5355-5360. doi: 10.1073/pnas.1618926114. Epub 2017 May 8.

Abstract

Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 10 tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (<100 m water depth), methane released from the seafloor may reach the atmosphere and potentially amplify global warming. On the other hand, biological uptake of carbon dioxide (CO) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea-air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO uptake rates (-33,300 ± 7,900 μmol m⋅d) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea-air methane efflux (17.3 ± 4.8 μmol m⋅d). The negative radiative forcing expected from this CO uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of C in CO) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea-air methane flux always increase the global atmospheric greenhouse gas burden.

摘要

预计在未来几十年里,北冰洋持续变暖将引发浅大陆架海底永久冻土融化释放出数太克(1太克 = 10吨)的甲烷,以及大陆坡上部甲烷水合物的分解。在浅大陆架(水深小于100米),从海底释放的甲烷可能会进入大气,进而可能加剧全球变暖。另一方面,二氧化碳(CO₂)的生物吸收有可能抵消排放甲烷的正变暖潜力,而这一过程在这些环境中尚未得到详细研究。在斯瓦尔巴德边缘一个浅的冒泡甲烷渗漏场收集的连续海 - 气通量数据显示,大气对CO₂的吸收速率(-33300 ± 7900微摩尔/米²·天)是周围海水的两倍,约是扩散性海 - 气甲烷通量(17.3 ± 4.8微摩尔/米²·天)的1900倍。这种CO₂吸收预期产生的负辐射强迫比甲烷排放产生的正辐射强迫大231倍。表层水特征(例如,高溶解氧、高pH值和CO₂中¹³C的富集)表明,富含营养的冷水从海底附近上涌伴随着甲烷排放,并刺激光合浮游植物消耗CO₂。这些发现挑战了一种广泛持有的观念,即那些以浅水甲烷渗漏和/或强烈升高的海 - 气甲烷通量为特征的区域总是会增加全球大气温室气体负担。

相似文献

1
Enhanced CO uptake at a shallow Arctic Ocean seep field overwhelms the positive warming potential of emitted methane.
Proc Natl Acad Sci U S A. 2017 May 23;114(21):5355-5360. doi: 10.1073/pnas.1618926114. Epub 2017 May 8.
2
Massive marine methane emissions from near-shore shallow coastal areas.
Sci Rep. 2016 Jun 10;6:27908. doi: 10.1038/srep27908.
3
Postglacial response of Arctic Ocean gas hydrates to climatic amelioration.
Proc Natl Acad Sci U S A. 2017 Jun 13;114(24):6215-6220. doi: 10.1073/pnas.1619288114. Epub 2017 Jun 5.
6
Chapter 1. Impacts of the oceans on climate change.
Adv Mar Biol. 2009;56:1-150. doi: 10.1016/S0065-2881(09)56001-4.
7
Methane and carbon dioxide emissions from inland waters in India - implications for large scale greenhouse gas balances.
Glob Chang Biol. 2014 Nov;20(11):3397-407. doi: 10.1111/gcb.12575. Epub 2014 Apr 30.
8
Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf.
Science. 2010 Mar 5;327(5970):1246-50. doi: 10.1126/science.1182221.
9
Heat-Wave Effects on Oxygen, Nutrients, and Phytoplankton Can Alter Global Warming Potential of Gases Emitted from a Small Shallow Lake.
Environ Sci Technol. 2016 Jun 21;50(12):6267-75. doi: 10.1021/acs.est.5b06312. Epub 2016 Jun 6.
10
Source apportionment of methane escaping the subsea permafrost system in the outer Eurasian Arctic Shelf.
Proc Natl Acad Sci U S A. 2021 Mar 9;118(10). doi: 10.1073/pnas.2019672118.

引用本文的文献

1
Reduced phase stability and faster formation/dissociation kinetics in confined methane hydrate.
Proc Natl Acad Sci U S A. 2021 Apr 20;118(16). doi: 10.1073/pnas.2024025118.
3
Fauna associated with shallow-water methane seeps in the Laptev Sea.
PeerJ. 2020 May 4;8:e9018. doi: 10.7717/peerj.9018. eCollection 2020.
4
Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions.
Sci Adv. 2020 Jan 29;6(5):eaay7934. doi: 10.1126/sciadv.aay7934. eCollection 2020 Jan.
5
A record of seafloor methane seepage across the last 150 million years.
Sci Rep. 2020 Feb 13;10(1):2562. doi: 10.1038/s41598-020-59431-3.
6
Ice sheets matter for the global carbon cycle.
Nat Commun. 2019 Aug 15;10(1):3567. doi: 10.1038/s41467-019-11394-4.
7
Water salinity and inundation control soil carbon decomposition during salt marsh restoration: An incubation experiment.
Ecol Evol. 2019 Feb 10;9(4):1911-1921. doi: 10.1002/ece3.4884. eCollection 2019 Feb.
8
Interpreting contemporary trends in atmospheric methane.
Proc Natl Acad Sci U S A. 2019 Feb 19;116(8):2805-2813. doi: 10.1073/pnas.1814297116. Epub 2019 Feb 7.
9
Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf.
Sci Adv. 2018 Jan 17;4(1):eaao4842. doi: 10.1126/sciadv.aao4842. eCollection 2018 Jan.

本文引用的文献

1
Ice-sheet-driven methane storage and release in the Arctic.
Nat Commun. 2016 Jan 7;7:10314. doi: 10.1038/ncomms10314.
3
Temporal constraints on hydrate-controlled methane seepage off Svalbard.
Science. 2014 Jan 17;343(6168):284-7. doi: 10.1126/science.1246298. Epub 2014 Jan 2.
4
A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico.
Science. 2011 Jan 21;331(6015):312-5. doi: 10.1126/science.1199697. Epub 2011 Jan 6.
5
Advances in quantifying air-sea gas exchange and environmental forcing.
Ann Rev Mar Sci. 2009;1:213-44. doi: 10.1146/annurev.marine.010908.163742.
6
Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf.
Science. 2010 Mar 5;327(5970):1246-50. doi: 10.1126/science.1182221.
7
Seasonal population dynamics and trophic role of planktonic nanoflagellates in coastal surface waters of the Southern Baltic Sea.
Environ Microbiol. 2010 Feb;12(2):364-77. doi: 10.1111/j.1462-2920.2009.02074.x. Epub 2009 Oct 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验