Suppr超能文献

体型会影响集群鱼类社会互动的强度和空间组织。

Body size affects the strength of social interactions and spatial organization of a schooling fish ().

作者信息

Romenskyy Maksym, Herbert-Read James E, Ward Ashley J W, Sumpter David J T

机构信息

Department of Mathematics, Uppsala University, PO Box 480, Uppsala 75106, Sweden.

Department of Zoology, Stockholm University, Stockholm 10691, Sweden.

出版信息

R Soc Open Sci. 2017 Apr 26;4(4):161056. doi: 10.1098/rsos.161056. eCollection 2017 Apr.

Abstract

While a rich variety of self-propelled particle models propose to explain the collective motion of fish and other animals, rigorous statistical comparison between models and data remains a challenge. Plausible models should be flexible enough to capture changes in the collective behaviour of animal groups at their different developmental stages and group sizes. Here, we analyse the statistical properties of schooling fish () through a combination of experiments and simulations. We make novel use of a Boltzmann inversion method, usually applied in molecular dynamics, to identify the effective potential of the mean force of fish interactions. Specifically, we show that larger fish have a larger repulsion zone, but stronger attraction, resulting in greater alignment in their collective motion. We model the collective dynamics of schools using a self-propelled particle model, modified to include varying particle speed and a local repulsion rule. We demonstrate that the statistical properties of the fish schools are reproduced by our model, thereby capturing a number of features of the behaviour and development of schooling fish.

摘要

虽然有各种各样的自驱动粒子模型试图解释鱼类和其他动物的集体运动,但模型与数据之间进行严格的统计比较仍然是一项挑战。合理的模型应足够灵活,以捕捉动物群体在不同发育阶段和群体规模下集体行为的变化。在这里,我们通过实验和模拟相结合的方式分析了集群鱼类的统计特性。我们创新性地使用了通常应用于分子动力学的玻尔兹曼反演方法,来确定鱼类相互作用平均力的有效势。具体而言,我们表明较大的鱼具有更大的排斥区,但吸引力更强,这导致它们在集体运动中具有更大的对齐性。我们使用自驱动粒子模型对鱼群的集体动力学进行建模,并进行了修改,以包括变化的粒子速度和局部排斥规则。我们证明我们的模型再现了鱼群的统计特性,从而捕捉到了集群鱼类行为和发育的一些特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3599/5414259/531c9c397466/rsos161056-g1.jpg

相似文献

1
Body size affects the strength of social interactions and spatial organization of a schooling fish ().
R Soc Open Sci. 2017 Apr 26;4(4):161056. doi: 10.1098/rsos.161056. eCollection 2017 Apr.
2
The impact of individual perceptual and cognitive factors on collective states in a data-driven fish school model.
PLoS Comput Biol. 2022 Mar 2;18(3):e1009437. doi: 10.1371/journal.pcbi.1009437. eCollection 2022 Mar.
3
Applying collective motion models to study discordant individual behaviours within a school of fish.
R Soc Open Sci. 2023 Dec 6;10(12):231618. doi: 10.1098/rsos.231618. eCollection 2023 Dec.
4
Collective dynamics of self-propelled particles with variable speed.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011901. doi: 10.1103/PhysRevE.86.011901. Epub 2012 Jul 2.
5
Inferring the structure and dynamics of interactions in schooling fish.
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18720-5. doi: 10.1073/pnas.1107583108. Epub 2011 Jul 27.
6
Swarming and pattern formation due to selective attraction and repulsion.
Interface Focus. 2012 Dec 6;2(6):746-56. doi: 10.1098/rsfs.2012.0030. Epub 2012 Sep 26.
7
Artificial fish schools: collective effects of school size, body size, and body form.
Artif Life. 2003 Summer;9(3):237-53. doi: 10.1162/106454603322392451.
8
Collective motion from local attraction.
J Theor Biol. 2011 Aug 21;283(1):145-51. doi: 10.1016/j.jtbi.2011.05.019. Epub 2011 May 23.
9
Collective response to perturbations in a data-driven fish school model.
J R Soc Interface. 2015 Mar 6;12(104):20141362. doi: 10.1098/rsif.2014.1362.
10
Using neuronal models to capture burst-and-glide motion and leadership in fish.
J R Soc Interface. 2023 Jul;20(204):20230212. doi: 10.1098/rsif.2023.0212. Epub 2023 Jul 19.

引用本文的文献

1
Using neuronal models to capture burst-and-glide motion and leadership in fish.
J R Soc Interface. 2023 Jul;20(204):20230212. doi: 10.1098/rsif.2023.0212. Epub 2023 Jul 19.
2
Drone Observation for the Quantitative Study of Complex Multilevel Societies.
Animals (Basel). 2023 Jun 8;13(12):1911. doi: 10.3390/ani13121911.
3
Dynamics of collective motion across time and species.
Philos Trans R Soc Lond B Biol Sci. 2023 Apr 10;378(1874):20220068. doi: 10.1098/rstb.2022.0068. Epub 2023 Feb 20.
4
The limits of convergence in the collective behavior of competing marine taxa.
Ecol Evol. 2022 Mar 22;12(3):e8747. doi: 10.1002/ece3.8747. eCollection 2022 Mar.
5
A quantitative decision theory of animal conflict.
Heliyon. 2021 Jul 19;7(7):e07621. doi: 10.1016/j.heliyon.2021.e07621. eCollection 2021 Jul.
6
Scale-Free Dynamics in Animal Groups and Brain Networks.
Front Syst Neurosci. 2021 Jan 20;14:591210. doi: 10.3389/fnsys.2020.591210. eCollection 2020.
7
A behavioral model for mapping the genetic architecture of gut-microbiota networks.
Gut Microbes. 2021 Jan-Dec;13(1):1820847. doi: 10.1080/19490976.2020.1820847. Epub 2020 Nov 1.
8
Guppies Prefer to Follow Large (Robot) Leaders Irrespective of Own Size.
Front Bioeng Biotechnol. 2020 May 15;8:441. doi: 10.3389/fbioe.2020.00441. eCollection 2020.
9
A Drive to Driven Model of Mapping Intraspecific Interaction Networks.
iScience. 2019 Dec 20;22:109-122. doi: 10.1016/j.isci.2019.11.002. Epub 2019 Nov 6.
10
The Three Dimensional Spatial Structure of Antarctic Krill Schools in the Laboratory.
Sci Rep. 2019 Jan 23;9(1):381. doi: 10.1038/s41598-018-37379-9.

本文引用的文献

1
Ontogeny of collective behavior reveals a simple attraction rule.
Proc Natl Acad Sci U S A. 2017 Feb 28;114(9):2295-2300. doi: 10.1073/pnas.1616926114. Epub 2017 Feb 13.
2
A Turing test for collective motion.
Biol Lett. 2015 Dec;11(12):20150674. doi: 10.1098/rsbl.2015.0674.
3
Estimation of Interaction Potentials through the Configurational Temperature Formalism.
J Chem Theory Comput. 2013 Dec 10;9(12):5685-92. doi: 10.1021/ct400580p. Epub 2013 Nov 22.
4
Emergent behavioural phenotypes of swarming models revealed by mimicking a frustrated anti-ferromagnet.
J R Soc Interface. 2015 Oct 6;12(111):20150520. doi: 10.1098/rsif.2015.0520.
5
Initiation and spread of escape waves within animal groups.
R Soc Open Sci. 2015 Apr 1;2(4):140355. doi: 10.1098/rsos.140355. eCollection 2015 Apr.
6
Hysteretic dynamics of active particles in a periodic orienting field.
J R Soc Interface. 2015 Jul 6;12(108):20150015. doi: 10.1098/rsif.2015.0015.
7
Collective behaviour without collective order in wild swarms of midges.
PLoS Comput Biol. 2014 Jul 24;10(7):e1003697. doi: 10.1371/journal.pcbi.1003697. eCollection 2014 Jul.
8
Derivation of coarse-grained potentials via multistate iterative Boltzmann inversion.
J Chem Phys. 2014 Jun 14;140(22):224104. doi: 10.1063/1.4880555.
9
Dynamical maximum entropy approach to flocking.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):042707. doi: 10.1103/PhysRevE.89.042707. Epub 2014 Apr 16.
10
Social interactions dominate speed control in poising natural flocks near criticality.
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7212-7. doi: 10.1073/pnas.1324045111. Epub 2014 May 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验