Suppr超能文献

推断成群游动鱼类的相互作用的结构和动态。

Inferring the structure and dynamics of interactions in schooling fish.

机构信息

Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.

出版信息

Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18720-5. doi: 10.1073/pnas.1107583108. Epub 2011 Jul 27.

Abstract

Determining individual-level interactions that govern highly coordinated motion in animal groups or cellular aggregates has been a long-standing challenge, central to understanding the mechanisms and evolution of collective behavior. Numerous models have been proposed, many of which display realistic-looking dynamics, but nonetheless rely on untested assumptions about how individuals integrate information to guide movement. Here we infer behavioral rules directly from experimental data. We begin by analyzing trajectories of golden shiners (Notemigonus crysoleucas) swimming in two-fish and three-fish shoals to map the mean effective forces as a function of fish positions and velocities. Speeding and turning responses are dynamically modulated and clearly delineated. Speed regulation is a dominant component of how fish interact, and changes in speed are transmitted to those both behind and ahead. Alignment emerges from attraction and repulsion, and fish tend to copy directional changes made by those ahead. We find no evidence for explicit matching of body orientation. By comparing data from two-fish and three-fish shoals, we challenge the standard assumption, ubiquitous in physics-inspired models of collective behavior, that individual motion results from averaging responses to each neighbor considered separately; three-body interactions make a substantial contribution to fish dynamics. However, pairwise interactions qualitatively capture the correct spatial interaction structure in small groups, and this structure persists in larger groups of 10 and 30 fish. The interactions revealed here may help account for the rapid changes in speed and direction that enable real animal groups to stay cohesive and amplify important social information.

摘要

确定在动物群体或细胞聚集体中控制高度协调运动的个体间相互作用一直是一个长期存在的挑战,是理解集体行为的机制和进化的核心。已经提出了许多模型,其中许多模型显示出逼真的动态,但仍然依赖于关于个体如何整合信息来指导运动的未经测试的假设。在这里,我们直接从实验数据中推断行为规则。我们首先分析了两条和三条金鳞鱼(Notemigonus crysoleucas)在鱼群中游泳的轨迹,以绘制作为鱼的位置和速度函数的平均有效力图。加速和转弯响应被动态地调制并清晰地划分。速度调节是鱼类相互作用的主要组成部分,速度的变化会传递给前后的鱼类。对齐是由吸引力和排斥力产生的,并且鱼类往往会复制前面鱼类的方向变化。我们没有发现明确的身体方向匹配的证据。通过比较两条鱼和三条鱼鱼群的数据,我们挑战了普遍存在于基于物理学的集体行为模型中的标准假设,即个体运动是由分别考虑每个邻居的反应平均得出的;三体相互作用对鱼类动力学有很大的贡献。然而,成对相互作用定性地捕获了小群体中正确的空间相互作用结构,并且这种结构在 10 条和 30 条鱼的更大群体中仍然存在。这里揭示的相互作用可能有助于解释速度和方向的快速变化,这些变化使真正的动物群体保持凝聚力并放大重要的社会信息。

相似文献

1
Inferring the structure and dynamics of interactions in schooling fish.
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18720-5. doi: 10.1073/pnas.1107583108. Epub 2011 Jul 27.
2
Inferring the rules of interaction of shoaling fish.
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18726-31. doi: 10.1073/pnas.1109355108. Epub 2011 Nov 7.
3
Computational and robotic modeling reveal parsimonious combinations of interactions between individuals in schooling fish.
PLoS Comput Biol. 2020 Mar 16;16(3):e1007194. doi: 10.1371/journal.pcbi.1007194. eCollection 2020 Mar.
4
Fish and robots swimming together: attraction towards the robot demands biomimetic locomotion.
J R Soc Interface. 2012 Aug 7;9(73):1856-68. doi: 10.1098/rsif.2012.0084. Epub 2012 Feb 22.
5
Selective social interactions and speed-induced leadership in schooling fish.
Proc Natl Acad Sci U S A. 2024 Apr 30;121(18):e2309733121. doi: 10.1073/pnas.2309733121. Epub 2024 Apr 25.
6
Model of Collective Fish Behavior with Hydrodynamic Interactions.
Phys Rev Lett. 2018 May 11;120(19):198101. doi: 10.1103/PhysRevLett.120.198101.
7
Collective states, multistability and transitional behavior in schooling fish.
PLoS Comput Biol. 2013;9(2):e1002915. doi: 10.1371/journal.pcbi.1002915. Epub 2013 Feb 28.
8
Inferring collective behaviour from a fossilized fish shoal.
Proc Biol Sci. 2019 May 29;286(1903):20190891. doi: 10.1098/rspb.2019.0891.
9
Disentangling and modeling interactions in fish with burst-and-coast swimming reveal distinct alignment and attraction behaviors.
PLoS Comput Biol. 2018 Jan 11;14(1):e1005933. doi: 10.1371/journal.pcbi.1005933. eCollection 2018 Jan.
10
Fish and robots swimming together in a water tunnel: robot color and tail-beat frequency influence fish behavior.
PLoS One. 2013 Oct 25;8(10):e77589. doi: 10.1371/journal.pone.0077589. eCollection 2013.

引用本文的文献

1
Flow velocity and boundary effects on fish interaction.
Sci Rep. 2025 Aug 27;15(1):31585. doi: 10.1038/s41598-025-13332-5.
2
Collective Behavior in Medaka Fish Depends on Discrete Kinematic States of Swimming Behavior.
bioRxiv. 2025 Jul 31:2025.07.25.666863. doi: 10.1101/2025.07.25.666863.
4
Beyond planar: fish schools adopt ladder formations in 3D.
Sci Rep. 2025 Jun 27;15(1):20249. doi: 10.1038/s41598-025-06150-2.
5
Technology Roadmap of Micro/Nanorobots.
ACS Nano. 2025 Jul 15;19(27):24174-24334. doi: 10.1021/acsnano.5c03911. Epub 2025 Jun 27.
6
Collective intermittent exploration in fish schools is mediated by visual cues.
R Soc Open Sci. 2025 Jun 25;12(6):250033. doi: 10.1098/rsos.250033. eCollection 2025 Jun.
7
Continuous emergence of phototaxis in Dictyostelium discoideum.
PLoS One. 2025 May 19;20(5):e0321614. doi: 10.1371/journal.pone.0321614. eCollection 2025.
8
Collective phases and long-term dynamics in a fish school model with burst-and-coast swimming.
R Soc Open Sci. 2025 May 9;12(5):240885. doi: 10.1098/rsos.240885. eCollection 2025 May.
9
Lane formation in criss-crossing crowds.
Proc Natl Acad Sci U S A. 2025 May 20;122(20):e2505488122. doi: 10.1073/pnas.2505488122. Epub 2025 May 12.

本文引用的文献

2
How simple rules determine pedestrian behavior and crowd disasters.
Proc Natl Acad Sci U S A. 2011 Apr 26;108(17):6884-8. doi: 10.1073/pnas.1016507108. Epub 2011 Apr 18.
3
Force estimation and prediction from time-varying density images.
IEEE Trans Pattern Anal Mach Intell. 2011 Jun;33(6):1132-46. doi: 10.1109/TPAMI.2010.185.
4
Inferring individual rules from collective behavior.
Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12576-80. doi: 10.1073/pnas.1001763107. Epub 2010 Jun 28.
5
Scale-free correlations in starling flocks.
Proc Natl Acad Sci U S A. 2010 Jun 29;107(26):11865-70. doi: 10.1073/pnas.1005766107. Epub 2010 Jun 14.
6
How perceived threat increases synchronization in collectively moving animal groups.
Proc Biol Sci. 2010 Oct 22;277(1697):3065-70. doi: 10.1098/rspb.2010.0855. Epub 2010 May 26.
7
Hierarchical group dynamics in pigeon flocks.
Nature. 2010 Apr 8;464(7290):890-3. doi: 10.1038/nature08891.
8
Experimental study of the behavioural mechanisms underlying self-organization in human crowds.
Proc Biol Sci. 2009 Aug 7;276(1668):2755-62. doi: 10.1098/rspb.2009.0405. Epub 2009 May 13.
9
Analyzing fish movement as a persistent turning walker.
J Math Biol. 2009 Mar;58(3):429-45. doi: 10.1007/s00285-008-0198-7. Epub 2008 Jun 28.
10
Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study.
Proc Natl Acad Sci U S A. 2008 Jan 29;105(4):1232-7. doi: 10.1073/pnas.0711437105. Epub 2008 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验