Kolmogorov Mikhail, Kennedy Eamonn, Dong Zhuxin, Timp Gregory, Pevzner Pavel A
Department of Computer Science and Engineering, University of California San Diego, La Jolla, California, United States of America.
Electrical Engineering and Biological Science, University of Notre Dame, Notre Dame, Indiana, United States of America.
PLoS Comput Biol. 2017 May 9;13(5):e1005356. doi: 10.1371/journal.pcbi.1005356. eCollection 2017 May.
Recent advances in top-down mass spectrometry enabled identification of intact proteins, but this technology still faces challenges. For example, top-down mass spectrometry suffers from a lack of sensitivity since the ion counts for a single fragmentation event are often low. In contrast, nanopore technology is exquisitely sensitive to single intact molecules, but it has only been successfully applied to DNA sequencing, so far. Here, we explore the potential of sub-nanopores for single-molecule protein identification (SMPI) and describe an algorithm for identification of the electrical current blockade signal (nanospectrum) resulting from the translocation of a denaturated, linearly charged protein through a sub-nanopore. The analysis of identification p-values suggests that the current technology is already sufficient for matching nanospectra against small protein databases, e.g., protein identification in bacterial proteomes.
自上而下的质谱技术最近取得的进展使得完整蛋白质的鉴定成为可能,但这项技术仍然面临挑战。例如,自上而下的质谱技术灵敏度不足,因为单次碎片化事件的离子计数往往很低。相比之下,纳米孔技术对单个完整分子极为敏感,但迄今为止仅成功应用于DNA测序。在这里,我们探索亚纳米孔用于单分子蛋白质鉴定(SMPI)的潜力,并描述一种算法,用于识别变性线性带电蛋白质通过亚纳米孔转运产生的电流阻断信号(纳米光谱)。对鉴定p值的分析表明,当前技术已足以将纳米光谱与小型蛋白质数据库进行匹配,例如细菌蛋白质组中的蛋白质鉴定。