Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
Department of Statistics, Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts.
Toxicol Sci. 2017 Jul 1;158(1):116-126. doi: 10.1093/toxsci/kfx077.
Recent studies have reported robust associations of long-term PM2.5 exposure with DNA methylation-based measures of aging; yet, the molecular implications of these relationships remain poorly understood. We evaluated if genetic variation in 3 biological pathways implicated in PM2.5-related disease-oxidative stress, endothelial function, and metal processing-could modify the effect of PM2.5 on DNAm-age, one prominent DNA methylation-based measure of biological age. This analysis was based on 552 individuals from the Normative Aging Study with at least one visit between 2000 and 2011 (n = 940 visits). A genetic-score approach was used to calculate aging-risk variant scores for endothelial function, oxidative stress, and metal processing pathways. One-year PM2.5 and PM2.5 component (sulfate and ammonium) levels at participants' addresses were estimated using the GEOS-chem transport model. Blood DNAm-age was calculated using CpG sites on the Illumina HumanMethylation450 BeadChip. In fully-adjusted linear mixed-effects models, the effects of sulfate on DNAm-age (in years) were greater in individuals with high aging-risk endothelial function variant scores when compared with individuals with low aging-risk endothelial function variant scores (Pinteraction = 0.0007; βHigh = 1.09, 95% CIHigh: 0.70, 1.48; βLow = 0.40, 95% CILow: 0.14, 0.67). Similar trends were observed in fully adjusted models of ammonium and total PM2.5 alone. No effect modification was observed by oxidative stress and metal processing variant scores. Secondary analyses revealed significant associations of serum endothelial markers, intercellular adhesion molecule-1 (β = 0.01, 95% CI: 0.002, 0.012) and vascular cell adhesion molecule-1 (β = 0.002, 95% CI: 0.0005, 0.0026), with DNAm-age. Our results add novel evidence that endothelial physiology may be important to DNAm-age relationships, but further research is required to establish their generalizability.
最近的研究报告表明,长期 PM2.5 暴露与基于 DNA 甲基化的衰老测量值之间存在强有力的关联;然而,这些关系的分子意义仍知之甚少。我们评估了在与 PM2.5 相关疾病有关的 3 个生物途径(氧化应激、内皮功能和金属处理)中,遗传变异是否可以改变 PM2.5 对 DNAm 年龄的影响,这是一种基于 DNA 甲基化的生物年龄的主要测量方法。这项分析基于 2000 年至 2011 年间至少有一次就诊的 552 名来自规范老化研究的个体(n=940 次就诊)。使用遗传评分方法计算内皮功能、氧化应激和金属处理途径的衰老风险变异评分。使用 GEOS-chem 传输模型估算参与者住址处的 PM2.5 及 PM2.5 成分(硫酸盐和铵)的一年水平。使用 Illumina HumanMethylation450 BeadChip 计算血液 DNAm 年龄。在完全调整的线性混合效应模型中,与低衰老风险内皮功能变异评分的个体相比,高衰老风险内皮功能变异评分的个体中,硫酸盐对 DNAm 年龄(以年为单位)的影响更大(P 交互=0.0007;β高=1.09,95%置信区间高=0.70,1.48;β低=0.40,95%置信区间低=0.14,0.67)。在单独调整的铵和总 PM2.5 的完全调整模型中也观察到类似的趋势。氧化应激和金属处理变异评分未观察到效应修饰。二次分析显示血清内皮标志物、细胞间黏附分子-1(β=0.01,95%置信区间:0.002,0.012)和血管细胞黏附分子-1(β=0.002,95%置信区间:0.0005,0.0026)与 DNAm 年龄显著相关。我们的结果提供了新的证据,表明内皮生理学可能与 DNAm 年龄的关系很重要,但需要进一步的研究来确定其普遍性。