Suppr超能文献

连续血糖监测(CGM)传感器在1型糖尿病儿科患者中的准确性。三个插入部位的比较:手臂、腹部和臀部。

Accuracy of a CGM Sensor in Pediatric Subjects With Type 1 Diabetes. Comparison of Three Insertion Sites: Arm, Abdomen, and Gluteus.

作者信息

Faccioli Simone, Del Favero Simone, Visentin Roberto, Bonfanti Riccardo, Iafusco Dario, Rabbone Ivana, Marigliano Marco, Schiaffini Riccardo, Bruttomesso Daniela, Cobelli Claudio

机构信息

1 Department of Information Engineering, University of Padua, Padua, Italy.

2 Diabetologia Pediatrica e Diabetes Research Institute (OSR-DRI), Ospedale San Raffaele, Milan, Italy.

出版信息

J Diabetes Sci Technol. 2017 Nov;11(6):1147-1154. doi: 10.1177/1932296817706377. Epub 2017 May 9.

Abstract

BACKGROUND

Patients with diabetes, especially pediatric ones, sometimes use continuous glucose monitoring (CGM) sensor in different positions from the approved ones. Here we compare the accuracy of Dexcom® G5 CGM sensor in three different sites: abdomen, gluteus (both approved) and arm (off-label).

METHOD

Thirty youths, 5-9 years old, with type 1 diabetes (T1D) wore the sensor during a clinical trial where frequent self-monitoring of blood glucose (SMBG) measurements were obtained. Sensor was inserted in different sites according to the patient habit. Accuracy metrics include absolute relative difference (ARD) and absolute difference (AD) of CGM with respect to SMBG. The three sites were compared with ANOVA. If the test detected a difference, an additional pair-wise comparison was performed.

RESULTS

Overall, no accuracy difference was detected: the mean ARD was 13.3% (SD = 13.5%) for abdomen, 13.4% (12.9%) for arm and 12.9% (20.2%) for gluteus ( P value = .83); the mean AD was 17.0 mg/dl (17.2 mg/dl) for abdomen, 17.2 mg/dl (17.1 mg/dl) for arm and 18.3 mg/dl (18.5 mg/dl) for gluteus ( P value = .30). In hypo- and euglycemia ARD ( P value = .87 and .15, respectively), and AD ( P value = .68 and .37, respectively) were not statistically different. At variance, in hyperglycemia, a significant difference was detected between the two approved sites, abdomen and gluteus (ΔARD = -2.2% [CI = -4.2%, -0.1%], P value = .04), whereas the comparisons with the off-label location, arm-abdomen, and arm-gluteus were not significant.

CONCLUSIONS

These results suggest that the accuracy of the sensor placed on the arm was not significantly different with respect to the two approved insertion sites (abdomen and gluteus). Larger, randomized trials are needed to draw final conclusions.

摘要

背景

糖尿病患者,尤其是儿童患者,有时会将连续血糖监测(CGM)传感器放置在批准位置以外的不同部位。在此,我们比较了德康G5 CGM传感器在三个不同部位(腹部、臀部(均为批准部位)和手臂(未标注部位))的准确性。

方法

30名5至9岁的1型糖尿病(T1D)青少年在一项临床试验中佩戴该传感器,期间进行了频繁的自我血糖监测(SMBG)测量。根据患者习惯将传感器插入不同部位。准确性指标包括CGM相对于SMBG的绝对相对差异(ARD)和绝对差异(AD)。对这三个部位进行方差分析(ANOVA)比较。如果测试检测到差异,则进行额外的两两比较。

结果

总体而言,未检测到准确性差异:腹部的平均ARD为13.3%(标准差=13.5%),手臂为13.4%(12.9%),臀部为12.9%(20.2%)(P值=0.83);腹部的平均AD为17.0mg/dl(17.2mg/dl),手臂为17.2mg/dl(17.1mg/dl),臀部为18.3mg/dl(18.5mg/dl)(P值=0.30)。在低血糖和血糖正常时,ARD(P值分别为0.87和0.15)以及AD(P值分别为0.68和0.37)无统计学差异。不同的是在高血糖时, 在两个批准部位,即腹部和臀部之间检测到显著差异(ΔARD = -2.2% [CI = -4.2%, -0.1%],P值=0.04),而与未标注部位(手臂 -腹部和手臂 -臀部)的比较无显著差异。

结论

这些结果表明,放置在手臂上的传感器的准确性与两个批准的插入部位(腹部和臀部)相比无显著差异。需要进行更大规模的随机试验以得出最终结论。

相似文献

1
Accuracy of a CGM Sensor in Pediatric Subjects With Type 1 Diabetes. Comparison of Three Insertion Sites: Arm, Abdomen, and Gluteus.
J Diabetes Sci Technol. 2017 Nov;11(6):1147-1154. doi: 10.1177/1932296817706377. Epub 2017 May 9.
2
Comparison of Continuous Glucose Monitoring Accuracy Between Abdominal and Upper Arm Insertion Sites.
Diabetes Technol Ther. 2019 May;21(5):295-302. doi: 10.1089/dia.2019.0014. Epub 2019 Apr 17.
3
Comparing the accuracy of transcutaneous sensor and 90-day implantable glucose sensor.
Nutr Metab Cardiovasc Dis. 2021 Feb 8;31(2):650-657. doi: 10.1016/j.numecd.2020.09.006. Epub 2020 Sep 12.
4
A Personalized Week-to-Week Updating Algorithm to Improve Continuous Glucose Monitoring Performance.
J Diabetes Sci Technol. 2017 Nov;11(6):1070-1079. doi: 10.1177/1932296817734367. Epub 2017 Oct 16.
5
Accuracy of a Factory-Calibrated, Real-Time Continuous Glucose Monitoring System During 10 Days of Use in Youth and Adults with Diabetes.
Diabetes Technol Ther. 2018 Jun;20(6):395-402. doi: 10.1089/dia.2018.0150. Epub 2018 Jun 14.
6
Extensive Assessment of Blood Glucose Monitoring During Postprandial Period and Its Impact on Closed-Loop Performance.
J Diabetes Sci Technol. 2017 Nov;11(6):1089-1095. doi: 10.1177/1932296817714272. Epub 2017 Jun 21.
7
Simple Post-Processing of Continuous Glucose Monitoring Measurements Improves Endpoints in Clinical Trials.
J Diabetes Sci Technol. 2020 Nov;14(6):1074-1078. doi: 10.1177/1932296819848721. Epub 2019 May 16.
8
9
Effect of BGM Accuracy on the Clinical Performance of CGM: An In-Silico Study.
J Diabetes Sci Technol. 2017 Nov;11(6):1196-1206. doi: 10.1177/1932296817710476. Epub 2017 May 31.
10
Accuracy of a Fourth-Generation Continuous Glucose Monitoring System in Children and Adolescents with Type 1 Diabetes.
Diabetes Technol Ther. 2018 Sep;20(9):576-584. doi: 10.1089/dia.2018.0109. Epub 2018 Jul 31.

引用本文的文献

1
Clinical Performance Evaluation of Continuous Glucose Monitoring Systems: A Scoping Review and Recommendations for Reporting.
J Diabetes Sci Technol. 2023 Nov;17(6):1506-1526. doi: 10.1177/19322968231190941. Epub 2023 Aug 20.
3
Accuracy of a Seventh-Generation Continuous Glucose Monitoring System in Children and Adolescents With Type 1 Diabetes.
J Diabetes Sci Technol. 2023 Jul;17(4):962-967. doi: 10.1177/19322968221091816. Epub 2022 Apr 25.
4
Fatigue Testing of Wearable Sensing Technologies: Issues and Opportunities.
Materials (Basel). 2021 Jul 21;14(15):4070. doi: 10.3390/ma14154070.
5
Technologies for Diabetes Self-Monitoring: A Scoping Review and Assessment Using the REASSURED Criteria.
J Diabetes Sci Technol. 2022 Jul;16(4):962-970. doi: 10.1177/1932296821997909. Epub 2021 Mar 9.
6
Comparative Accuracy Analysis of a Real-time and an Intermittent-Scanning Continuous Glucose Monitoring System.
J Diabetes Sci Technol. 2021 Mar;15(2):287-293. doi: 10.1177/1932296819895022. Epub 2019 Dec 17.
8
Current Diabetes Technology: Striving for the Artificial Pancreas.
Diagnostics (Basel). 2019 Mar 15;9(1):31. doi: 10.3390/diagnostics9010031.
10
Performance and Usability of Three Systems for Continuous Glucose Monitoring in Direct Comparison.
J Diabetes Sci Technol. 2019 Sep;13(5):890-898. doi: 10.1177/1932296819826965. Epub 2019 Feb 7.

本文引用的文献

2
Continuous Glucose Monitoring Sensors: Past, Present and Future Algorithmic Challenges.
Sensors (Basel). 2016 Dec 9;16(12):2093. doi: 10.3390/s16122093.
4
Improved Accuracy of Continuous Glucose Monitoring Systems in Pediatric Patients with Diabetes Mellitus: Results from Two Studies.
Diabetes Technol Ther. 2016 Feb;18 Suppl 2(Suppl 2):S223-33. doi: 10.1089/dia.2015.0380.
5
Accuracy of Continuous Glucose Monitoring During Three Closed-Loop Home Studies Under Free-Living Conditions.
Diabetes Technol Ther. 2015 Nov;17(11):801-7. doi: 10.1089/dia.2015.0062. Epub 2015 Aug 4.
7
Clinical accuracy of a continuous glucose monitoring system with an advanced algorithm.
J Diabetes Sci Technol. 2015 Mar;9(2):209-14. doi: 10.1177/1932296814559746. Epub 2014 Nov 3.
8
Artificial pancreas: model predictive control design from clinical experience.
J Diabetes Sci Technol. 2013 Nov 1;7(6):1470-83. doi: 10.1177/193229681300700607.
9
Modular closed-loop control of diabetes.
IEEE Trans Biomed Eng. 2012 Nov;59(11):2986-99. doi: 10.1109/TBME.2012.2192930. Epub 2012 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验