Suppr超能文献

血糖监测准确性对连续血糖监测临床性能的影响:一项计算机模拟研究

Effect of BGM Accuracy on the Clinical Performance of CGM: An In-Silico Study.

作者信息

Campos-Náñez Enrique, Breton Marc D

机构信息

1 Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA.

出版信息

J Diabetes Sci Technol. 2017 Nov;11(6):1196-1206. doi: 10.1177/1932296817710476. Epub 2017 May 31.

Abstract

BACKGROUND

Standard management of type 1 diabetes (T1D) relies on blood glucose monitoring based on a range of technologies from self-monitoring of blood glucose (BGM) to continuous glucose monitoring (CGM). Even as CGM technology matures, patients utilize BGM for calibration and dosing. The question of how the accuracy of both technologies interact is still not well understood.

METHODS

We use a recently developed data-driven simulation approach to characterize the relationship between CGM and BGM accuracy especially how BGM accuracy impacts CGM performance in four different use cases with increasing levels of reliance on twice daily calibrated CGM. Simulations are used to estimate clinical outcomes and isolate CGM and BGM accuracy characteristics that drive performance.

RESULTS

Our results indicate that meter (BGM) accuracy, and more specifically systematic positive or negative bias, has a significant effect on clinical performance (HbA1c and severe hypoglycemia events) in all use-cases generated for twice daily calibrated CGMs. Moreover, CGM sensor accuracy can amplify or mitigate, but not eliminate these effects.

CONCLUSION

As a system, BGM and CGM and their mode of use (use-case) interact to determine clinical outcomes. Clinical outcomes (eg, HbA1c, severe hypoglycemia, time in range) can be closely approximated by linear relationships with two BGM accuracy characteristics, namely error and bias. In turn, the coefficients of this linear relationship are determined by the use-case and by CGM accuracy (MARD).

摘要

背景

1型糖尿病(T1D)的标准管理依赖于基于多种技术的血糖监测,从自我血糖监测(BGM)到连续血糖监测(CGM)。即使CGM技术已经成熟,患者仍使用BGM进行校准和给药。两种技术的准确性如何相互作用的问题仍未得到很好的理解。

方法

我们使用一种最近开发的数据驱动模拟方法来描述CGM和BGM准确性之间的关系,特别是在四种不同的使用场景中,随着对每日两次校准的CGM依赖程度的增加,BGM准确性如何影响CGM性能。模拟用于估计临床结果,并分离出驱动性能的CGM和BGM准确性特征。

结果

我们的结果表明,血糖仪(BGM)的准确性,更具体地说是系统性正偏差或负偏差,在为每日两次校准的CGM生成的所有使用场景中,对临床性能(糖化血红蛋白和严重低血糖事件)都有显著影响。此外,CGM传感器的准确性可以放大或减轻,但不能消除这些影响。

结论

作为一个系统,BGM和CGM及其使用模式(使用场景)相互作用以确定临床结果。临床结果(例如,糖化血红蛋白、严重低血糖、血糖在目标范围内的时间)可以通过与两个BGM准确性特征(即误差和偏差)的线性关系来近似。反过来,这种线性关系的系数由使用场景和CGM准确性(平均绝对相对偏差)决定。

相似文献

1
Effect of BGM Accuracy on the Clinical Performance of CGM: An In-Silico Study.
J Diabetes Sci Technol. 2017 Nov;11(6):1196-1206. doi: 10.1177/1932296817710476. Epub 2017 May 31.
2
Clinical Impact of Blood Glucose Monitoring Accuracy: An In-Silico Study.
J Diabetes Sci Technol. 2017 Nov;11(6):1187-1195. doi: 10.1177/1932296817710474. Epub 2017 Jun 1.
7
Accuracy of a CGM Sensor in Pediatric Subjects With Type 1 Diabetes. Comparison of Three Insertion Sites: Arm, Abdomen, and Gluteus.
J Diabetes Sci Technol. 2017 Nov;11(6):1147-1154. doi: 10.1177/1932296817706377. Epub 2017 May 9.
8
A Personalized Week-to-Week Updating Algorithm to Improve Continuous Glucose Monitoring Performance.
J Diabetes Sci Technol. 2017 Nov;11(6):1070-1079. doi: 10.1177/1932296817734367. Epub 2017 Oct 16.
9
Simple Post-Processing of Continuous Glucose Monitoring Measurements Improves Endpoints in Clinical Trials.
J Diabetes Sci Technol. 2020 Nov;14(6):1074-1078. doi: 10.1177/1932296819848721. Epub 2019 May 16.
10
Extensive Assessment of Blood Glucose Monitoring During Postprandial Period and Its Impact on Closed-Loop Performance.
J Diabetes Sci Technol. 2017 Nov;11(6):1089-1095. doi: 10.1177/1932296817714272. Epub 2017 Jun 21.

引用本文的文献

1
User Performance Evaluation and System Accuracy Assessment of Four Blood Glucose Monitoring Systems With Color Coding of Measurement Results.
J Diabetes Sci Technol. 2024 May;18(3):644-652. doi: 10.1177/19322968221141926. Epub 2022 Nov 26.
2
Impact of Blood Glucose Monitoring System Accuracy on Clinical Decision Making for Diabetes Management.
J Diabetes Sci Technol. 2023 May;17(3):683-689. doi: 10.1177/19322968221080916. Epub 2022 Feb 28.
3
Clinical Study of a High Accuracy Green Design Blood Glucose Monitor Using an Innovative Optical Transmission Absorbance System.
J Diabetes Sci Technol. 2022 Sep;16(5):1069-1075. doi: 10.1177/19322968211060865. Epub 2021 Dec 10.
4
Diabetes Technology Meeting 2020.
J Diabetes Sci Technol. 2021 Jul;15(4):916-960. doi: 10.1177/19322968211016480.
5
Accuracy and User Performance of a New Blood Glucose Monitoring System.
J Diabetes Sci Technol. 2021 Nov;15(6):1382-1389. doi: 10.1177/1932296820974348. Epub 2020 Nov 26.

本文引用的文献

1
Population-Specific Models of Glycemic Control in Intensive Care: Towards a Simulation-Based Methodology for Protocol Optimization.
Proc Am Control Conf. 2015 Jul;2015:5084-5090. doi: 10.1109/ACC.2015.7172132. Epub 2015 Jul 30.
2
Regulation Catches Up to Reality.
J Diabetes Sci Technol. 2017 Jan;11(1):160-164. doi: 10.1177/1932296816667749. Epub 2016 Sep 25.
3
Coming of age: the artificial pancreas for type 1 diabetes.
Diabetologia. 2016 Sep;59(9):1795-805. doi: 10.1007/s00125-016-4022-4. Epub 2016 Jun 30.
4
Improved Accuracy of Continuous Glucose Monitoring Systems in Pediatric Patients with Diabetes Mellitus: Results from Two Studies.
Diabetes Technol Ther. 2016 Feb;18 Suppl 2(Suppl 2):S223-33. doi: 10.1089/dia.2015.0380.
7
Assessing sensor accuracy for non-adjunct use of continuous glucose monitoring.
Diabetes Technol Ther. 2015 Mar;17(3):177-86. doi: 10.1089/dia.2014.0272. Epub 2014 Dec 1.
8
The UVA/PADOVA Type 1 Diabetes Simulator: New Features.
J Diabetes Sci Technol. 2014 Jan;8(1):26-34. doi: 10.1177/1932296813514502. Epub 2014 Jan 1.
9
The artificial pancreas: current status and future prospects in the management of diabetes.
Ann N Y Acad Sci. 2014 Apr;1311:102-23. doi: 10.1111/nyas.12431.
10
Modeling the glucose sensor error.
IEEE Trans Biomed Eng. 2014 Mar;61(3):620-9. doi: 10.1109/TBME.2013.2284023. Epub 2013 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验