Campos-Náñez Enrique, Breton Marc D
1 Center for Diabetes Technology, University of Virginia, Charlottesville, VA, USA.
J Diabetes Sci Technol. 2017 Nov;11(6):1196-1206. doi: 10.1177/1932296817710476. Epub 2017 May 31.
Standard management of type 1 diabetes (T1D) relies on blood glucose monitoring based on a range of technologies from self-monitoring of blood glucose (BGM) to continuous glucose monitoring (CGM). Even as CGM technology matures, patients utilize BGM for calibration and dosing. The question of how the accuracy of both technologies interact is still not well understood.
We use a recently developed data-driven simulation approach to characterize the relationship between CGM and BGM accuracy especially how BGM accuracy impacts CGM performance in four different use cases with increasing levels of reliance on twice daily calibrated CGM. Simulations are used to estimate clinical outcomes and isolate CGM and BGM accuracy characteristics that drive performance.
Our results indicate that meter (BGM) accuracy, and more specifically systematic positive or negative bias, has a significant effect on clinical performance (HbA1c and severe hypoglycemia events) in all use-cases generated for twice daily calibrated CGMs. Moreover, CGM sensor accuracy can amplify or mitigate, but not eliminate these effects.
As a system, BGM and CGM and their mode of use (use-case) interact to determine clinical outcomes. Clinical outcomes (eg, HbA1c, severe hypoglycemia, time in range) can be closely approximated by linear relationships with two BGM accuracy characteristics, namely error and bias. In turn, the coefficients of this linear relationship are determined by the use-case and by CGM accuracy (MARD).
1型糖尿病(T1D)的标准管理依赖于基于多种技术的血糖监测,从自我血糖监测(BGM)到连续血糖监测(CGM)。即使CGM技术已经成熟,患者仍使用BGM进行校准和给药。两种技术的准确性如何相互作用的问题仍未得到很好的理解。
我们使用一种最近开发的数据驱动模拟方法来描述CGM和BGM准确性之间的关系,特别是在四种不同的使用场景中,随着对每日两次校准的CGM依赖程度的增加,BGM准确性如何影响CGM性能。模拟用于估计临床结果,并分离出驱动性能的CGM和BGM准确性特征。
我们的结果表明,血糖仪(BGM)的准确性,更具体地说是系统性正偏差或负偏差,在为每日两次校准的CGM生成的所有使用场景中,对临床性能(糖化血红蛋白和严重低血糖事件)都有显著影响。此外,CGM传感器的准确性可以放大或减轻,但不能消除这些影响。
作为一个系统,BGM和CGM及其使用模式(使用场景)相互作用以确定临床结果。临床结果(例如,糖化血红蛋白、严重低血糖、血糖在目标范围内的时间)可以通过与两个BGM准确性特征(即误差和偏差)的线性关系来近似。反过来,这种线性关系的系数由使用场景和CGM准确性(平均绝对相对偏差)决定。