Suppr超能文献

酿酒酵母果糖-1,6-二磷酸酶的不可逆失活,与丝氨酸11处的蛋白质磷酸化无关。

Irreversible inactivation of Saccharomyces cerevisiae fructose-1,6-bisphosphatase independent of protein phosphorylation at Ser11.

作者信息

Rose M, Entian K D, Hofmann L, Vogel R F, Mecke D

机构信息

Medizinisch-Naturwissenschaftliches Forschungszentrum, Universität Tübingen, FRG.

出版信息

FEBS Lett. 1988 Dec 5;241(1-2):55-9. doi: 10.1016/0014-5793(88)81030-5.

Abstract

The fructose-1,6-bisphosphatase gene was used with multicopy plasmids to study rapid reversible and irreversible inactivation after addition of glucose to derepressed Saccharomyces cerevisiae cells. Both inactivation systems could inactivate the enzyme, even if 20-fold over-expressed. The putative serine residue, at which fructose-1,6-bisphosphatase is phosphorylated, was changed to an alanine residue without notably affecting the catalytic activity. No rapid reversible inactivation was observed with the mutated enzyme. Nonetheless, the modified enzyme was still irreversibly inactivated, clearly demonstrating that phosphorylation is an independent regulatory circuit that reduces fructose-1,6-bisphosphatase activity within seconds. Furthermore, irreversible glucose inactivation was not triggered by phosphorylation of the enzyme.

摘要

果糖-1,6-二磷酸酶基因与多拷贝质粒一起用于研究向去阻遏的酿酒酵母细胞中添加葡萄糖后快速可逆和不可逆的失活情况。即使该酶过表达20倍,这两种失活系统仍能使其失活。推测的果糖-1,6-二磷酸酶被磷酸化的丝氨酸残基被改变为丙氨酸残基,而对催化活性没有明显影响。突变酶未观察到快速可逆失活。尽管如此,修饰后的酶仍会不可逆地失活,这清楚地表明磷酸化是一个独立的调节回路,可在数秒内降低果糖-1,6-二磷酸酶的活性。此外,酶的磷酸化不会引发不可逆的葡萄糖失活。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验