Suppr超能文献

新分离突变体的蛋白质和氨基末端脯氨酸对于酿酒酵母中果糖-1,6-二磷酸酶的泛素-蛋白酶体催化的分解代谢降解至关重要。

Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae.

作者信息

Hämmerle M, Bauer J, Rose M, Szallies A, Thumm M, Düsterhus S, Mecke D, Entian K D, Wolf D H

机构信息

Institut für Biochemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany.

出版信息

J Biol Chem. 1998 Sep 25;273(39):25000-5. doi: 10.1074/jbc.273.39.25000.

Abstract

Addition of glucose to cells of the yeast Saccharomyces cerevisiae growing on a non-fermentable carbon source leads to selective and rapid degradation of fructose-1,6-bisphosphatase. This so called catabolite inactivation of the enzyme is brought about by the ubiquitin-proteasome system. To identify additional components of the catabolite inactivation machinery, we isolated three mutant strains, gid1, gid2, and gid3, defective in glucose-induced degradation of fructose-1,6-bisphospha-tase. All mutant strains show in addition a defect in catabolite inactivation of three other gluconeogenic enzymes: cytosolic malate dehydrogenase, isocitrate lyase, and phosphoenolpyruvate carboxykinase. These findings indicate a common mechanism for the inactivation of all four enzymes. The mutants were also impaired in degradation of short-lived N-end rule substrates, which are degraded via the ubiquitin-proteasome system. Site-directed mutagenesis of the amino-terminal proline residue yielded fructose-1,6-bisphosphatase forms that were no longer degraded via the ubiquitin-proteasome pathway. All amino termini other than proline made fructose-1,6-bisphosphatase inaccessible to degradation. However, the exchange of the amino-terminal proline had no effect on the phosphorylation of the mutated enzyme. Our findings suggest an essential function of the amino-terminal proline residue for the degradation process of fructose-1,6-bisphosphatase. Phosphorylation of the enzyme was not necessary for degradation to occur.

摘要

向以非发酵性碳源生长的酿酒酵母细胞中添加葡萄糖会导致果糖-1,6-二磷酸酶被选择性快速降解。这种所谓的该酶的分解代谢失活是由泛素-蛋白酶体系统引起的。为了鉴定分解代谢失活机制的其他成分,我们分离出了三株突变菌株gid1、gid2和gid3,它们在葡萄糖诱导的果糖-1,6-二磷酸酶降解方面存在缺陷。所有突变菌株在另外三种糖异生酶的分解代谢失活方面也存在缺陷:胞质苹果酸脱氢酶、异柠檬酸裂合酶和磷酸烯醇式丙酮酸羧激酶。这些发现表明这四种酶失活存在共同机制。这些突变体在短命的N端规则底物的降解方面也存在缺陷,这些底物是通过泛素-蛋白酶体系统降解的。对氨基端脯氨酸残基进行定点诱变产生了不再通过泛素-蛋白酶体途径降解的果糖-1,6-二磷酸酶形式。除脯氨酸以外的所有氨基端都使果糖-1,6-二磷酸酶无法被降解。然而,氨基端脯氨酸的交换对突变酶的磷酸化没有影响。我们的发现表明氨基端脯氨酸残基对果糖-1,6-二磷酸酶的降解过程具有重要作用。该酶的磷酸化对于降解的发生不是必需的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验