Suppr超能文献

酿酒酵母在可发酵碳源上高效转变为生长状态需要通过Ras途径进行信号传导。

Efficient transition to growth on fermentable carbon sources in Saccharomyces cerevisiae requires signaling through the Ras pathway.

作者信息

Jiang Y, Davis C, Broach J R

机构信息

Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.

出版信息

EMBO J. 1998 Dec 1;17(23):6942-51. doi: 10.1093/emboj/17.23.6942.

Abstract

Strains carrying ras2(318S) as their sole RAS gene fail to elicit a transient increase in cAMP levels following addition of glucose to starved cells but maintain normal steady-state levels of cAMP under a variety of growth conditions. Such strains show extended delays in resuming growth following transition from a quiescent state to glucose-containing growth media, either in emerging from stationary phase or following inoculation as spores onto fresh media. Otherwise, growth of such strains is indistinguishable from that of RAS2(+) strains. ras2(318S) strains also exhibit a delay in glucose-stimulated phosphorylation and turnover of fructose-1,6-bisphosphatase, a substrate of the cAMP-dependent protein kinase A (PKA) and a key component of the gluconeogenic branch of the glycolytic pathway. Finally Tpk(w) strains, which fail to modulate PKA in response to fluctuations in cAMP levels, show the same growth delay phenotypes, as do ras2(318S) strains. These observations indicate that the glucose-induced cAMP spike results in a transient activation of PKA, which is required for efficient transition of yeast cells from a quiescent state to resumption of rapid growth. This represents the first demonstration that yeast cells use the Ras pathway to transmit a signal to effect a biological change in response to an upstream stimulus.

摘要

携带ras2(318S)作为其唯一RAS基因的菌株,在向饥饿细胞添加葡萄糖后,无法引发cAMP水平的短暂升高,但在各种生长条件下能维持正常的cAMP稳态水平。这些菌株在从静止状态转变为含葡萄糖的生长培养基后恢复生长时,无论是从稳定期出现还是作为孢子接种到新鲜培养基上,都表现出延长的延迟。否则,这些菌株的生长与RAS2(+)菌株没有区别。ras2(318S)菌株在葡萄糖刺激的果糖-1,6-二磷酸酶的磷酸化和周转方面也表现出延迟,果糖-1,6-二磷酸酶是cAMP依赖性蛋白激酶A (PKA)的底物,也是糖酵解途径糖异生分支的关键成分。最后,Tpk(w)菌株无法响应cAMP水平的波动来调节PKA,它表现出与ras2(318S)菌株相同的生长延迟表型。这些观察结果表明,葡萄糖诱导的cAMP峰值导致PKA的短暂激活,这是酵母细胞从静止状态有效过渡到恢复快速生长所必需的。这是首次证明酵母细胞利用Ras途径传递信号,以响应上游刺激而实现生物学变化。

相似文献

4
Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae.
J Biol Chem. 2004 Nov 5;279(45):46715-22. doi: 10.1074/jbc.M405136200. Epub 2004 Aug 31.
6
Ras and Gpa2 mediate one branch of a redundant glucose signaling pathway in yeast.
PLoS Biol. 2004 May;2(5):E128. doi: 10.1371/journal.pbio.0020128. Epub 2004 May 11.
7
Regulation of respiratory growth by Ras: the glyoxylate cycle mutant, cit2Delta, is suppressed by RAS2.
Curr Genet. 2006 Sep;50(3):161-71. doi: 10.1007/s00294-006-0084-z. Epub 2006 Jul 11.
9
In Saccharomyces cerevisiae an unbalanced level of tyrosine phosphorylation down-regulates the Ras/PKA pathway.
Int J Biochem Cell Biol. 2006 Mar;38(3):444-60. doi: 10.1016/j.biocel.2005.10.004. Epub 2005 Nov 2.

引用本文的文献

1
Paralogs in the PKA Regulon Traveled Different Evolutionary Routes to Divergent Expression in Budding Yeast.
Front Fungal Biol. 2021 Apr 27;2:642336. doi: 10.3389/ffunb.2021.642336. eCollection 2021.
2
A Systematic Review on Quiescent State Research Approaches in .
Cells. 2023 Jun 12;12(12):1608. doi: 10.3390/cells12121608.
3
Structural and Functional Insights into GID/CTLH E3 Ligase Complexes.
Int J Mol Sci. 2022 May 24;23(11):5863. doi: 10.3390/ijms23115863.
4
Asymmetric distribution of glucose transporter mRNA provides a growth advantage in yeast.
EMBO J. 2019 May 15;38(10). doi: 10.15252/embj.2018100373. Epub 2019 Mar 25.
5
Recovery from N Deprivation Is a Transcriptionally and Functionally Distinct State in .
Plant Physiol. 2018 Mar;176(3):2007-2023. doi: 10.1104/pp.17.01546. Epub 2017 Dec 29.
7
Exocytosis and Endocytosis of Small Vesicles across the Plasma Membrane in Saccharomyces cerevisiae.
Membranes (Basel). 2014 Sep 3;4(3):608-29. doi: 10.3390/membranes4030608.
8
Ras-Mediated Signal Transduction and Virulence in Human Pathogenic Fungi.
Fungal Genom Biol. 2012;2(1):105. doi: 10.4172/2165-8056.1000105.
9
Regulation of autophagy by glucose in Mammalian cells.
Cells. 2012 Jul 27;1(3):372-95. doi: 10.3390/cells1030372.
10
Glucose induces rapid changes in the secretome of Saccharomyces cerevisiae.
Proteome Sci. 2014 Feb 12;12(1):9. doi: 10.1186/1477-5956-12-9.

本文引用的文献

1
Transitions between oscillatory modes in a glycolytic model system.
Proc Natl Acad Sci U S A. 1984 Jul;81(14):4394-8. doi: 10.1073/pnas.81.14.4394.
2
ENZYME INDUCTION AS AN ALL-OR-NONE PHENOMENON.
Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):553-66. doi: 10.1073/pnas.43.7.553.
4
Regulation of cell size by glucose is exerted via repression of the CLN1 promoter.
Mol Cell Biol. 1998 May;18(5):2492-501. doi: 10.1128/MCB.18.5.2492.
5
Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog.
EMBO J. 1997 Dec 1;16(23):7008-18. doi: 10.1093/emboj/16.23.7008.
6
Exploring the metabolic and genetic control of gene expression on a genomic scale.
Science. 1997 Oct 24;278(5338):680-6. doi: 10.1126/science.278.5338.680.
7
Yeast microarrays for genome wide parallel genetic and gene expression analysis.
Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):13057-62. doi: 10.1073/pnas.94.24.13057.
8
9
Signalling pathways leading to transcriptional regulation of genes involved in the activation of glycolysis in yeast.
Mol Microbiol. 1997 Aug;25(3):483-93. doi: 10.1046/j.1365-2958.1997.4811847.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验