Stein-Merlob Ashley F, Hara Tetsuya, McCarthy Jason R, Mauskapf Adam, Hamilton James A, Ntziachristos Vasilis, Libby Peter, Jaffer Farouc A
From the Cardiovascular Research Center, Cardiology Division (A.F.S., T.H., A.M., F.A.J.) and Center for Systems Biology (J.R.M.), Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston; Department of Physiology and Biophysics, Boston University School of Medicine, MA (J.A.H.); Department of Biomedical Engineering, Boston University, MA (J.A.H.); Institute of Biological and Medical Imaging, Chair of Biological Imaging, Technical University of Munich, Germany (V.N.); and Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (P.L.).
Circ Cardiovasc Imaging. 2017 May;10(5). doi: 10.1161/CIRCIMAGING.116.005813.
The role of local alterations in endothelial functional integrity in atherosclerosis remains incompletely understood. This study used nanoparticle-enhanced optical molecular imaging to probe in vivo mechanisms involving impaired endothelial barrier function in experimental atherothrombosis.
Atherosclerosis was induced in rabbits (n=31) using aortic balloon injury and high-cholesterol diet. Rabbits received ultrasmall superparamagnetic iron oxide nanoparticles (CLIO) derivatized with a near-infrared fluorophore (CyAm7) 24 hours before near-infrared fluorescence imaging. Rabbits were then either euthanized (n=9) or underwent a pharmacological triggering protocol to induce thrombosis (n=22). CLIO-CyAm7 nanoparticles accumulated in areas of atheroma (<0.05 versus reference areas). On near-infrared fluorescence microscopy, CLIO-CyAm7 primarily deposited in the superficial intima within plaque macrophages, endothelial cells, and smooth muscle cells. Nanoparticle-positive areas further exhibited impaired endothelial barrier function as illuminated by Evans blue leakage. Deeper nanoparticle deposition occurred in areas of plaque neovascularization. In rabbits subject to pharmacological triggering, plaques that thrombosed exhibited significantly higher CLIO-CyAm7 accumulation compared with nonthrombosed plaques (<0.05). In thrombosed plaques, nanoparticles accumulated preferentially at the plaque-thrombus interface. Intravascular 2-dimensional near-infrared fluorescence imaging detected nanoparticles in human coronary artery-sized atheroma in vivo (<0.05 versus reference segments).
Plaques that exhibit impaired in vivo endothelial permeability in cell-rich areas are susceptible to subsequent thrombosis. Molecular imaging of nanoparticle deposition may help to identify biologically high-risk atheroma.
局部内皮功能完整性改变在动脉粥样硬化中的作用仍未完全明确。本研究采用纳米颗粒增强光学分子成像技术,探究实验性动脉粥样硬化血栓形成中内皮屏障功能受损的体内机制。
采用主动脉球囊损伤和高胆固醇饮食诱导31只家兔发生动脉粥样硬化。在近红外荧光成像前24小时,给家兔注射用近红外荧光团(CyAm7)衍生的超小超顺磁性氧化铁纳米颗粒(CLIO)。然后将家兔安乐死(n = 9)或进行药理学触发方案以诱导血栓形成(n = 22)。CLIO-CyAm7纳米颗粒在动脉粥样硬化区域积聚(与对照区域相比,P<0.05)。在近红外荧光显微镜下,CLIO-CyAm7主要沉积在斑块内巨噬细胞、内皮细胞和平滑肌细胞的浅表内膜中。纳米颗粒阳性区域进一步表现出内皮屏障功能受损,伊文思蓝渗漏可证明这一点。在斑块新生血管区域发生更深层的纳米颗粒沉积。在接受药理学触发的家兔中,发生血栓形成的斑块与未发生血栓形成的斑块相比,CLIO-CyAm7积聚显著更高(P<0.05)。在血栓形成的斑块中,纳米颗粒优先在斑块-血栓界面积聚。血管内二维近红外荧光成像在体内检测到人类冠状动脉大小的动脉粥样硬化中的纳米颗粒(与对照节段相比,P<0.05)。
在富含细胞区域表现出体内内皮通透性受损的斑块易发生随后的血栓形成。纳米颗粒沉积的分子成像可能有助于识别生物学上高危的动脉粥样硬化斑块。