School of Physics & Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom.
Jeremiah Horrocks Institute for Mathematics, Physics & Astronomy, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom.
Sci Rep. 2017 May 9;7(1):1640. doi: 10.1038/s41598-017-01748-7.
Domain walls in ferromagnetic nanowires are potential building-blocks of future technologies such as racetrack memories, in which data encoded in the domain walls are transported using spin-polarised currents. However, the development of energy-efficient devices has been hampered by the high current densities needed to initiate domain wall motion. We show here that a remarkable reduction in the critical current density can be achieved for in-plane magnetised coupled domain walls in CoFe/Ru/CoFe synthetic ferrimagnet tracks. The antiferromagnetic exchange coupling between the layers leads to simple Néel wall structures, imaged using photoemission electron and Lorentz transmission electron microscopy, with a width of only ~100 nm. The measured critical current density to set these walls in motion, detected using magnetotransport measurements, is 1.0 × 10 Am, almost an order of magnitude lower than in a ferromagnetically coupled control sample. Theoretical modelling indicates that this is due to nonadiabatic driving of anisotropically coupled walls, a mechanism that can be used to design efficient domain-wall devices.
铁磁纳米线中的畴壁是未来技术的潜在构建模块,例如赛道式存储器,其中通过自旋极化电流传输编码在畴壁中的数据。然而,由于需要高电流密度来启动畴壁运动,因此能量高效设备的发展受到了阻碍。我们在这里表明,在 CoFe/Ru/CoFe 合成亚铁磁体轨道中,对于面内磁化的耦合畴壁,可以显著降低临界电流密度。层之间的反铁磁交换耦合导致了简单的尼尔壁结构,使用光发射电子和洛伦兹透射电子显微镜进行成像,宽度仅为约 100nm。使用磁输运测量检测到的使这些壁运动的测量临界电流密度为 1.0×10^-7A/m,比铁磁耦合控制样品低一个数量级。理论模型表明,这是由于各向异性耦合壁的非绝热驱动所致,这一机制可用于设计高效的畴壁器件。