Ehrenstein Vera, Nielsen Henrik, Pedersen Alma B, Johnsen Søren P, Pedersen Lars
Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus N, Denmark.
Clin Epidemiol. 2017 Apr 27;9:245-250. doi: 10.2147/CLEP.S129779. eCollection 2017.
Routinely recorded health data have evolved from mere by-products of health care delivery or billing into a powerful research tool for studying and improving patient care through clinical epidemiologic research. Big data in the context of epidemiologic research means large interlinkable data sets within a single country or networks of multinational databases. Several Nordic, European, and other multinational collaborations are now well established. Advantages of big data for clinical epidemiology include improved precision of estimates, which is especially important for reassuring ("null") findings; ability to conduct meaningful analyses in subgroup of patients; and rapid detection of safety signals. Big data will also provide new possibilities for research by enabling access to linked information from biobanks, electronic medical records, patient-reported outcome measures, automatic and semiautomatic electronic monitoring devices, and social media. The sheer amount of data, however, does not eliminate and may even amplify systematic error. Therefore, methodologies addressing systematic error, clinical knowledge, and underlying hypotheses are more important than ever to ensure that the signal is discernable behind the noise.
常规记录的健康数据已从医疗保健服务或计费的单纯副产品演变为一种强大的研究工具,可通过临床流行病学研究来研究和改善患者护理。流行病学研究背景下的大数据是指单个国家内可相互关联的大型数据集或跨国数据库网络。目前,北欧、欧洲及其他一些跨国合作已成熟建立。大数据用于临床流行病学的优势包括提高估计的准确性,这对于证实(“无效”)结果尤为重要;能够在患者亚组中进行有意义的分析;以及快速检测安全信号。大数据还将通过实现从生物样本库、电子病历、患者报告的结局指标、自动和半自动电子监测设备以及社交媒体获取关联信息,为研究提供新的可能性。然而,数据量庞大并不能消除甚至可能放大系统误差。因此,解决系统误差、临床知识和潜在假设的方法比以往任何时候都更重要,以确保在噪声背后能够辨别信号。