一种用于衰减行走过程中脑电图记录中与运动相关伪迹的通道剔除方法。
A Channel Rejection Method for Attenuating Motion-Related Artifacts in EEG Recordings during Walking.
作者信息
Oliveira Anderson S, Schlink Bryan R, Hairston W David, König Peter, Ferris Daniel P
机构信息
Human Neuromechanics Laboratory, School of Kinesiology, University of MichiganAnn Arbor, MI, USA.
Department of Materials and Production, Aalborg UniversityAalborg, Denmark.
出版信息
Front Neurosci. 2017 Apr 26;11:225. doi: 10.3389/fnins.2017.00225. eCollection 2017.
Recording scalp electroencephalography (EEG) during human motion can introduce motion artifacts. Repetitive head movements can generate artifact patterns across scalp EEG sensors. There are many methods for identifying and rejecting bad channels and independent components from EEG datasets, but there is a lack of methods dedicated to evaluate specific intra-channel amplitude patterns for identifying motion-related artifacts. In this study, we proposed a template correlation rejection (TCR) as a novel method for identifying and rejecting EEG channels and independent components carrying motion-related artifacts. We recorded EEG data from 10 subjects during treadmill walking. The template correlation rejection method consists of creating templates of amplitude patterns and determining the fraction of total epochs presenting relevant correlation to the template. For EEG channels, the template correlation rejection removed channels presenting the majority of epochs (>75%) correlated to the template, and presenting pronounced amplitude in comparison to all recorded channels. For independent components, the template correlation rejection removed components presenting the majority of epochs correlated to the template. Evaluation of scalp maps and power spectra confirmed low neural content for the rejected components. We found that channels identified for rejection contained ~60% higher delta power, and had spectral properties locked to the gait phases. After rejecting the identified channels and running independent component analysis on the EEG datasets, the proposed method identified 4.3 ± 1.8 independent components (out of 198 ± 12) with substantive motion-related artifacts. These results indicate that template correlation rejection is an effective method for rejecting EEG channels contaminated with motion-related artifact during human locomotion.
在人体运动过程中记录头皮脑电图(EEG)会引入运动伪迹。重复性头部运动可在头皮EEG传感器上产生伪迹模式。有许多方法可用于识别和剔除EEG数据集中的坏通道和独立成分,但缺乏专门用于评估特定通道内幅度模式以识别与运动相关伪迹的方法。在本研究中,我们提出了一种模板相关性剔除(TCR)方法,作为一种识别和剔除携带与运动相关伪迹的EEG通道和独立成分的新方法。我们在跑步机行走过程中记录了10名受试者的EEG数据。模板相关性剔除方法包括创建幅度模式模板,并确定与模板呈现相关相关性的总时段的比例。对于EEG通道,模板相关性剔除会移除那些呈现与模板相关的大部分时段(>75%)且与所有记录通道相比呈现明显幅度的通道。对于独立成分,模板相关性剔除会移除那些呈现与模板相关的大部分时段的成分。头皮图和功率谱评估证实了被剔除成分的神经内容较低。我们发现,被确定要剔除的通道包含的δ功率高出约60%,并且具有与步态相位锁定的频谱特性。在剔除确定的通道并对EEG数据集进行独立成分分析后,所提出的方法识别出4.3±1.8个(在198±12个中)带有实质性运动相关伪迹的独立成分。这些结果表明,模板相关性剔除是一种在人体运动期间剔除被与运动相关伪迹污染的EEG通道的有效方法。