Suppr超能文献

行走过程中速度控制背后的前额叶、顶叶后部和感觉运动网络活动。

Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking.

作者信息

Bulea Thomas C, Kim Jonghyun, Damiano Diane L, Stanley Christopher J, Park Hyung-Soon

机构信息

Functional and Applied Biomechanics Section, Rehabilitation Medicine Department, National Institutes of Health Bethesda, MD, USA.

Robotics Engineering Department, Daegu Gyeongbuk Institute of Science and Technology Daegu, South Korea.

出版信息

Front Hum Neurosci. 2015 May 12;9:247. doi: 10.3389/fnhum.2015.00247. eCollection 2015.

Abstract

Accumulating evidence suggests cortical circuits may contribute to control of human locomotion. Here, noninvasive electroencephalography (EEG) recorded from able-bodied volunteers during a novel treadmill walking paradigm was used to assess neural correlates of walking. A systematic processing method, including a recently developed subspace reconstruction algorithm, reduced movement-related EEG artifact prior to independent component analysis and dipole source localization. We quantified cortical activity while participants tracked slow and fast target speeds across two treadmill conditions: an active mode that adjusted belt speed based on user movements and a passive mode reflecting a typical treadmill. Our results reveal frequency specific, multi-focal task related changes in cortical oscillations elicited by active walking. Low γ band power, localized to the prefrontal and posterior parietal cortices, was significantly increased during double support and early swing phases, critical points in the gait cycle since the active controller adjusted speed based on pelvis position and swing foot velocity. These phasic γ band synchronizations provide evidence that prefrontal and posterior parietal networks, previously implicated in visuo-spatial and somotosensory integration, are engaged to enhance lower limb control during gait. Sustained μ and β band desynchronization within sensorimotor cortex, a neural correlate for movement, was observed during walking thereby validating our methods for isolating cortical activity. Our results also demonstrate the utility of EEG recorded during locomotion for probing the multi-regional cortical networks which underpin its execution. For example, the cortical network engagement elicited by the active treadmill suggests that it may enhance neuroplasticity for more effective motor training.

摘要

越来越多的证据表明,皮层回路可能有助于控制人类的行走。在此,我们利用一种新型跑步机行走范式,对健康志愿者进行非侵入性脑电图(EEG)记录,以评估行走的神经相关性。一种系统的处理方法,包括最近开发的子空间重建算法,在进行独立成分分析和偶极子源定位之前,减少了与运动相关的EEG伪迹。我们在参与者跟踪两种跑步机条件下的慢速和快速目标速度时,对皮层活动进行了量化:一种是根据用户运动调整皮带速度的主动模式,另一种是反映典型跑步机的被动模式。我们的结果揭示了主动行走引起的皮层振荡中频率特异性、多焦点任务相关变化。在双支撑和早期摆动阶段,位于前额叶和顶叶后部皮层的低γ波段功率显著增加,这是步态周期中的关键点,因为主动控制器根据骨盆位置和摆动脚速度来调整速度。这些阶段性的γ波段同步化提供了证据,表明先前涉及视觉空间和躯体感觉整合的前额叶和顶叶后部网络在步态期间参与增强下肢控制。在行走过程中观察到感觉运动皮层内持续的μ和β波段去同步化,这是运动的神经相关性,从而验证了我们分离皮层活动的方法。我们的结果还证明了在运动过程中记录的EEG对于探究支撑其执行的多区域皮层网络的效用。例如,主动跑步机引起的皮层网络参与表明,它可能增强神经可塑性以进行更有效的运动训练。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7be/4429238/9ceaa321fc92/fnhum-09-00247-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验