Suppr超能文献

整合 3D 运动分析与功能磁共振神经影像学,以识别下肢运动的神经相关性。

Integrated 3D motion analysis with functional magnetic resonance neuroimaging to identify neural correlates of lower extremity movement.

机构信息

The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Emory Sports Performance And Research Center, Flowery Branch, GA, USA.

The SPORT Center, Division of Sports Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Emory Sports Performance And Research Center, Flowery Branch, GA, USA; Department of Orthopaedics, Emory School of Medicine, Emory University, Atlanta, GA, USA.

出版信息

J Neurosci Methods. 2021 May 1;355:109108. doi: 10.1016/j.jneumeth.2021.109108. Epub 2021 Mar 8.

Abstract

BACKGROUND

To better understand the neural drivers of aberrant motor control, methods are needed to identify whole brain neural correlates of isolated joints during multi-joint lower-extremity coordinated movements. This investigation aimed to identify the neural correlates of knee kinematics during a unilateral leg press task.

NEW METHOD

The current study utilized an MRI-compatible motion capture system in conjunction with a lower extremity unilateral leg press task during fMRI. Knee joint kinematics and brain activity were collected concurrently and averaged range of motion were modeled as covariates to determine the neural substrates of knee out-of-plane (frontal) and in-plane (sagittal) range of motion.

RESULTS

Increased out-of-plane (frontal) range of motion was associated with altered brain activity in regions important for attention, sensorimotor control, and sensorimotor integration (z >3.1, p < .05), but no such correlates were found with in-plane (sagittal) range of motion (z >3.1, p > .05). Comparison with Existing Method(s): Previous studies have either presented overall brain activation only, or utilized biomechanical data collected outside MRI in a standard biomechanics lab for identifying single-joint neural correlates.

CONCLUSIONS

The study shows promise for the MRI-compatible system to capture lower-extremity biomechanical data collected concurrently during fMRI, and the present data identified potentially unique neural drivers of aberrant biomechanics. Future research can adopt these methods for patient populations with CNS-related movement disorders to identify single-joint kinematic neural correlates that may adjunctively supplement brain-body therapeutic approaches.

摘要

背景

为了更好地理解运动控制异常的神经驱动因素,需要采用方法来识别多关节下肢协调运动过程中孤立关节的全脑神经相关性。本研究旨在确定单侧腿压任务期间膝关节运动学的神经相关性。

新方法

本研究在 fMRI 期间利用了与 MRI 兼容的运动捕捉系统和下肢单侧腿压任务。同时采集了膝关节运动学和大脑活动,并对平均运动范围进行了建模,作为协变量来确定膝关节离平面(额状面)和共面(矢状面)运动范围的神经基础。

结果

离平面(额状面)运动范围增加与注意力、感觉运动控制和感觉运动整合的重要区域的大脑活动改变相关(z >3.1,p <.05),但共面(矢状面)运动范围没有发现这种相关性(z >3.1,p >.05)。

与现有方法的比较

以前的研究要么只呈现整体大脑激活,要么在标准生物力学实验室中利用 MRI 之外收集的生物力学数据来识别单关节神经相关性。

结论

该研究表明,MRI 兼容系统有望在 fMRI 期间同时采集下肢生物力学数据,目前的数据确定了异常生物力学的潜在独特神经驱动因素。未来的研究可以采用这些方法对与中枢神经系统相关的运动障碍患者群体进行研究,以识别可能辅助大脑-身体治疗方法的单关节运动学神经相关性。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验