Suppr超能文献

真实微观结构模拟器 (RMS):显微镜图像三维细胞分割的扩散蒙特卡罗模拟。

Realistic Microstructure Simulator (RMS): Monte Carlo simulations of diffusion in three-dimensional cell segmentations of microscopy images.

机构信息

Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA.

Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA.

出版信息

J Neurosci Methods. 2021 Feb 15;350:109018. doi: 10.1016/j.jneumeth.2020.109018. Epub 2020 Dec 3.

Abstract

BACKGROUND

Monte Carlo simulations of diffusion are commonly used as a model validation tool as they are especially suitable for generating the diffusion MRI signal in complicated tissue microgeometries.

NEW METHOD

Here we describe the details of implementing Monte Carlo simulations in three-dimensional (3d) voxelized segmentations of cells in microscopy images. Using the concept of the corner reflector, we largely reduce the computational load of simulating diffusion within and exchange between multiple cells. Precision is further achieved by GPU-based parallel computations.

RESULTS

Our simulation of diffusion in white matter axons segmented from a mouse brain demonstrates its value in validating biophysical models. Furthermore, we provide the theoretical background for implementing a discretized diffusion process, and consider the finite-step effects of the particle-membrane reflection and permeation events, needed for efficient simulation of interactions with irregular boundaries, spatially variable diffusion coefficient, and exchange.

COMPARISON WITH EXISTING METHODS

To our knowledge, this is the first Monte Carlo pipeline for MR signal simulations in a substrate composed of numerous realistic cells, accounting for their permeable and irregularly-shaped membranes.

CONCLUSIONS

The proposed RMS pipeline makes it possible to achieve fast and accurate simulations of diffusion in realistic tissue microgeometry, as well as the interplay with other MR contrasts. Presently, RMS focuses on simulations of diffusion, exchange, and T and T NMR relaxation in static tissues, with a possibility to straightforwardly account for susceptibility-induced T effects and flow.

摘要

背景

扩散的蒙特卡罗模拟通常被用作模型验证工具,因为它们特别适合在复杂的组织微观结构中产生扩散 MRI 信号。

新方法

在这里,我们描述了在显微镜图像的三维(3d)体素化细胞分割中实现蒙特卡罗模拟的细节。我们利用角反射器的概念,大大降低了模拟多个细胞内和细胞间扩散的计算负荷。通过基于 GPU 的并行计算进一步提高了精度。

结果

我们对白质轴突的扩散模拟从老鼠大脑的分割中验证了生物物理模型的价值。此外,我们为离散扩散过程的实现提供了理论背景,并考虑了粒子-膜反射和渗透事件的有限步效应,这对于有效模拟不规则边界、空间变化扩散系数和交换的相互作用是必要的。

与现有方法的比较

据我们所知,这是第一个用于由大量真实细胞组成的基质中 MR 信号模拟的蒙特卡罗流水线,考虑了它们可渗透和不规则形状的膜。

结论

所提出的 RMS 流水线使得在真实组织微观结构中实现快速准确的扩散模拟以及与其他 MR 对比度的相互作用成为可能。目前,RMS 专注于静态组织中扩散、交换和 T 和 T NMR 弛豫的模拟,有可能直接考虑顺磁性诱导的 T 效应和流动。

相似文献

1
Realistic Microstructure Simulator (RMS): Monte Carlo simulations of diffusion in three-dimensional cell segmentations of microscopy images.
J Neurosci Methods. 2021 Feb 15;350:109018. doi: 10.1016/j.jneumeth.2020.109018. Epub 2020 Dec 3.
2
Towards microstructure fingerprinting: Estimation of tissue properties from a dictionary of Monte Carlo diffusion MRI simulations.
Neuroimage. 2019 Jan 1;184:964-980. doi: 10.1016/j.neuroimage.2018.09.076. Epub 2018 Sep 30.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
5
Diffusion MRI simulation of realistic neurons with SpinDoctor and the Neuron Module.
Neuroimage. 2020 Nov 15;222:117198. doi: 10.1016/j.neuroimage.2020.117198. Epub 2020 Jul 27.
6
Diffusion microscopist simulator: a general Monte Carlo simulation system for diffusion magnetic resonance imaging.
PLoS One. 2013 Oct 10;8(10):e76626. doi: 10.1371/journal.pone.0076626. eCollection 2013.
7
Monte Carlo simulation of water diffusion through cardiac tissue models.
Med Eng Phys. 2023 Oct;120:104013. doi: 10.1016/j.medengphy.2023.104013. Epub 2023 Jun 24.
8
A generative model of realistic brain cells with application to numerical simulation of the diffusion-weighted MR signal.
Neuroimage. 2019 Mar;188:391-402. doi: 10.1016/j.neuroimage.2018.12.025. Epub 2018 Dec 12.
10
Evaluating the accuracy and precision of a two-compartment Kärger model using Monte Carlo simulations.
J Magn Reson. 2010 Sep;206(1):59-67. doi: 10.1016/j.jmr.2010.06.002. Epub 2010 Jun 9.

引用本文的文献

1
SpinWalk: A Monte Carlo simulator for MR-signal formation in inhomogeneous tissue.
Imaging Neurosci (Camb). 2025 Apr 15;3. doi: 10.1162/imag_a_00533. eCollection 2025.
3
In vivo cortical microstructure mapping using high-gradient diffusion MRI accounting for intercompartmental water exchange effects.
Neuroimage. 2025 Jul 1;314:121258. doi: 10.1016/j.neuroimage.2025.121258. Epub 2025 May 9.
4
SpinFlowSim: A blood flow simulation framework for histology-informed diffusion MRI microvasculature mapping in cancer.
Med Image Anal. 2025 May;102:103531. doi: 10.1016/j.media.2025.103531. Epub 2025 Mar 7.
7
Revealing membrane integrity and cell size from diffusion kurtosis time dependence.
Magn Reson Med. 2025 Mar;93(3):1329-1347. doi: 10.1002/mrm.30335. Epub 2024 Oct 29.
8
Exploring white matter dynamics and morphology through interactive numerical phantoms: the White Matter Generator.
Front Neuroinform. 2024 Jul 31;18:1354708. doi: 10.3389/fninf.2024.1354708. eCollection 2024.
9
In vivo mapping of cellular resolution neuropathology in brain ischemia with diffusion MRI.
Sci Adv. 2024 Jul 19;10(29):eadk1817. doi: 10.1126/sciadv.adk1817. Epub 2024 Jul 17.

本文引用的文献

1
The present and the future of microstructure MRI: From a paradigm shift to normal science.
J Neurosci Methods. 2021 Mar 1;351:108947. doi: 10.1016/j.jneumeth.2020.108947. Epub 2020 Oct 21.
2
The impact of realistic axonal shape on axon diameter estimation using diffusion MRI.
Neuroimage. 2020 Dec;223:117228. doi: 10.1016/j.neuroimage.2020.117228. Epub 2020 Aug 13.
3
A time-dependent diffusion MRI signature of axon caliber variations and beading.
Commun Biol. 2020 Jul 7;3(1):354. doi: 10.1038/s42003-020-1050-x.
4
ConFiG: Contextual Fibre Growth to generate realistic axonal packing for diffusion MRI simulation.
Neuroimage. 2020 Oct 15;220:117107. doi: 10.1016/j.neuroimage.2020.117107. Epub 2020 Jul 2.
5
In vivo observation and biophysical interpretation of time-dependent diffusion in human cortical gray matter.
Neuroimage. 2020 Nov 15;222:117054. doi: 10.1016/j.neuroimage.2020.117054. Epub 2020 Jun 22.
6
Nonivasive quantification of axon radii using diffusion MRI.
Elife. 2020 Feb 12;9:e49855. doi: 10.7554/eLife.49855.
7
Time-dependent diffusion in undulating thin fibers: Impact on axon diameter estimation.
NMR Biomed. 2020 Mar;33(3):e4187. doi: 10.1002/nbm.4187. Epub 2019 Dec 23.
8
MEDUSA: A GPU-based tool to create realistic phantoms of the brain microstructure using tiny spheres.
Neuroimage. 2019 Jun;193:10-24. doi: 10.1016/j.neuroimage.2019.02.055. Epub 2019 Mar 5.
10
Intra-axonal diffusivity in brain white matter.
Neuroimage. 2019 Apr 1;189:543-550. doi: 10.1016/j.neuroimage.2019.01.015. Epub 2019 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验