Perfetto Rosa, Del Prete Sonia, Vullo Daniela, Sansone Giovanni, Barone Carmela M A, Rossi Mosè, Supuran Claudiu T, Capasso Clemente
a Istituto di Bioscienze e Biorisorse, CNR , Napoli , Italy.
b Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche, and Laboratorio di Chimica Bioinorganica, Polo Scientifico , Università degli Studi di Firenze , Sesto Fiorentino , Italy.
J Enzyme Inhib Med Chem. 2017 Dec;32(1):759-766. doi: 10.1080/14756366.2017.1316719.
Carbonic anhydrases (CAs; EC 4.2.1.1) are metalloenzymes with a pivotal potential role in the biomimetic CO capture process (CCP) because these biocatalysts catalyse the simple but physiologically crucial reaction of carbon dioxide hydration to bicarbonate and protons in all life kingdoms. The CAs are among the fastest known enzymes, with k values of up to 10 s for some members of the superfamily, providing thus advantages when compared with other CCP methods, as they are specific for CO. Thermostable CAs might be used in CCP technology because of their ability to perform catalysis in operatively hard conditions, typical of the industrial processes. Moreover, the improvement of the enzyme stability and its reuse are important for lowering the costs. These aspects can be overcome by immobilising the enzyme on a specific support. We report in this article that the recombinant thermostable SspCA (α-CA) from the thermophilic bacterium Sulfurihydrogenibium yellowstonense can been heterologously produced by a high-density fermentation of Escherichia coli cultures, and covalently immobilised onto the surface of magnetic FeO nanoparticles (MNP) via carbodiimide activation reactions. Our results demonstrate that using a benchtop bioprocess station and strategies for optimising the bacterial growth, it is possible to produce at low cost a large amount SspCA. Furthermore, the enzyme stability and storage greatly increased through the immobilisation, as SspCA bound to MNP could be recovered from the reaction mixture by simply using a magnet or an electromagnetic field, due to the strong ferromagnetic properties of FeO.
碳酸酐酶(CAs;EC 4.2.1.1)是金属酶,在仿生CO₂捕获过程(CCP)中具有关键的潜在作用,因为这些生物催化剂催化了二氧化碳水合生成碳酸氢根和质子的简单但生理上至关重要的反应,该反应在所有生物界中都存在。碳酸酐酶是已知最快的酶之一,该超家族的一些成员的k值高达10⁶ s⁻¹,因此与其他CCP方法相比具有优势,因为它们对CO₂具有特异性。热稳定的碳酸酐酶可用于CCP技术,因为它们能够在工业过程中典型的苛刻操作条件下进行催化。此外,提高酶的稳定性及其重复使用性对于降低成本很重要。这些方面可以通过将酶固定在特定载体上来克服。我们在本文中报告,来自嗜热细菌黄石硫氢叶菌的重组热稳定SspCA(α-CA)可以通过大肠杆菌培养物的高密度发酵进行异源生产,并通过碳二亚胺活化反应共价固定在磁性Fe₃O₄纳米颗粒(MNP)的表面。我们的结果表明,使用台式生物处理工作站和优化细菌生长的策略,可以低成本大量生产SspCA。此外,通过固定化,酶的稳定性和储存性大大提高,因为由于Fe₃O₄的强铁磁性质,与MNP结合的SspCA可以通过简单地使用磁铁或电磁场从反应混合物中回收。