Mahipant Gumpanat, Paemanee Atchara, Roytrakul Sittiruk, Kato Junichi, Vangnai Alisa S
Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand.
Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330 Thailand.
Biotechnol Biofuels. 2017 May 11;10:122. doi: 10.1186/s13068-017-0811-3. eCollection 2017.
Butanol is an intensively used industrial solvent and an attractive alternative biofuel, but the bioproduction suffers from its high toxicity. Among the native butanol producers and heterologous butanol-producing hosts, 168 exhibited relatively higher butanol tolerance. Nevertheless, organic solvent tolerance mechanisms in Bacilli and Gram-positive bacteria have relatively less information. Thus, this study aimed to elucidate butanol stress responses that may involve in unique tolerance of 168 to butanol and other alcohol biocommodities.
Using comparative proteomics approach and molecular analysis of butanol-challenged 168, 108 butanol-responsive proteins were revealed, and classified into seven groups according to their biological functions. While parts of them may be similar to the proteins reportedly involved in solvent stress response in other Gram-positive bacteria, significant role of proline in the proline-glutamate-arginine metabolism was substantiated. Detection of intracellular proline and glutamate accumulation, as well as glutamate transient conversion during butanol exposure confirmed their necessity, especially proline, for cellular butanol tolerance. Disruption of the particular genes in proline biosynthesis pathways clarified the essential role of the anabolic ProB-ProA-ProI system over the osmoadaptive ProH-ProA-ProJ system for cellular protection in response to butanol exposure. Molecular modifications to increase gene dosage for proline biosynthesis as well as for glutamate acquisition enhanced butanol tolerance of 168 up to 1.8% (vol/vol) under the conditions tested.
This work revealed the important role of proline as an effective compatible solute that is required to protect cells against butanol chaotropic effect and to maintain cellular functions in 168 during butanol exposure. Nevertheless, the accumulation of intracellular proline against butanol stress required a metabolic conversion of glutamate through the specific biosynthetic ProB-ProA-ProI route. Thus, exogenous addition of glutamate, but not proline, enhanced butanol tolerance. These findings serve as a practical knowledge to enhance 168 butanol tolerance, and demonstrate means to engineer the bacterial host to promote higher butanol/alcohol tolerance of 168 for the production of butanol and other alcohol biocommodities.
丁醇是一种广泛使用的工业溶剂,也是一种有吸引力的替代性生物燃料,但生物生产过程受其高毒性影响。在天然丁醇生产者和异源丁醇生产宿主中,168表现出相对较高的丁醇耐受性。然而,芽孢杆菌属和革兰氏阳性菌中的有机溶剂耐受机制相关信息相对较少。因此,本研究旨在阐明可能与168对丁醇和其他醇类生物产品的独特耐受性有关的丁醇应激反应。
通过比较蛋白质组学方法以及对受丁醇挑战的168进行分子分析,发现了108种丁醇反应蛋白,并根据其生物学功能分为七组。虽然其中部分蛋白可能与据报道参与其他革兰氏阳性菌溶剂应激反应的蛋白相似,但脯氨酸在脯氨酸-谷氨酸-精氨酸代谢中的重要作用得到了证实。对细胞内脯氨酸和谷氨酸积累的检测,以及丁醇暴露期间谷氨酸的瞬时转化,证实了它们对于细胞丁醇耐受性的必要性,尤其是脯氨酸。脯氨酸生物合成途径中特定基因的破坏阐明了合成代谢的ProB-ProA-ProI系统相对于渗透适应性ProH-ProA-ProJ系统在响应丁醇暴露时对细胞保护的重要作用。在测试条件下,对脯氨酸生物合成以及谷氨酸获取进行基因剂量增加的分子改造,使168的丁醇耐受性提高了1.8%(体积/体积)。
这项工作揭示了脯氨酸作为一种有效的相容性溶质的重要作用,它能保护细胞免受丁醇离液序列高的效应影响,并在丁醇暴露期间维持168中的细胞功能。然而,细胞内脯氨酸针对丁醇应激的积累需要通过特定的生物合成ProB-ProA-ProI途径对谷氨酸进行代谢转化。因此,外源添加谷氨酸而非脯氨酸可提高丁醇耐受性。这些发现为增强168的丁醇耐受性提供了实用知识,并展示了改造细菌宿主以提高168对丁醇和其他醇类的耐受性以生产丁醇和其他醇类生物产品的方法。