Mihaicuta Stefan, Udrescu Mihai, Topirceanu Alexandru, Udrescu Lucretia
Department of Pulmonology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania.
Department of Computer and Information Technology, University Politehnica of Timisoara, Timisoara, Romania.
PeerJ. 2017 May 9;5:e3289. doi: 10.7717/peerj.3289. eCollection 2017.
Obstructive sleep apnea syndrome (OSAS) is a common clinical condition. The way that OSAS risk factors associate and converge is not a random process. As such, defining OSAS phenotypes fosters personalized patient management and population screening. In this paper, we present a network-based observational, retrospective study on a cohort of 1,371 consecutive OSAS patients and 611 non-OSAS control patients in order to explore the risk factor associations and their correlation with OSAS comorbidities. To this end, we construct the Apnea Patients Network (APN) using patient compatibility relationships according to six objective parameters: age, gender, body mass index (BMI), blood pressure (BP), neck circumference (NC) and the Epworth sleepiness score (ESS). By running targeted network clustering algorithms, we identify eight patient phenotypes and corroborate them with the co-morbidity types. Also, by employing machine learning on the uncovered phenotypes, we derive a classification tree and introduce a computational framework which render the Sleep Apnea Syndrome Score (SAS); our OSAS score is implemented as an easy-to-use, web-based computer program which requires less than one minute for processing one individual. Our evaluation, performed on a distinct validation database with 231 consecutive patients, reveals that OSAS prediction with SAS has a significant specificity improvement (an increase of 234%) for only 8.2% sensitivity decrease in comparison with the state-of-the-art score STOP-BANG. The fact that SAS has bigger specificity makes it appropriate for OSAS screening and risk prediction in big, general populations.
阻塞性睡眠呼吸暂停综合征(OSAS)是一种常见的临床病症。OSAS风险因素相互关联和汇聚的方式并非随机过程。因此,定义OSAS表型有助于个性化的患者管理和人群筛查。在本文中,我们对一组1371例连续的OSAS患者和611例非OSAS对照患者进行了一项基于网络的观察性回顾性研究,以探讨风险因素之间的关联及其与OSAS合并症的相关性。为此,我们根据年龄、性别、体重指数(BMI)、血压(BP)、颈围(NC)和爱泼华嗜睡量表(ESS)这六个客观参数,利用患者兼容性关系构建了呼吸暂停患者网络(APN)。通过运行有针对性的网络聚类算法,我们识别出八种患者表型,并通过合并症类型对其进行了验证。此外,通过对发现的表型运用机器学习,我们得出了一棵分类树,并引入了一个计算框架,得出睡眠呼吸暂停综合征评分(SAS);我们的OSAS评分被实现为一个易于使用的基于网络的计算机程序,处理一个个体所需时间不到一分钟。我们在一个包含231例连续患者的独立验证数据库上进行的评估表明,与最先进的评分系统STOP-BANG相比,使用SAS进行OSAS预测时,特异性有显著提高(提高了234%),而敏感性仅下降了8.2%。SAS具有更高特异性这一事实使其适用于大型普通人群中的OSAS筛查和风险预测。