Suppr超能文献

希腊北部初级卫生保健患者中的阻塞性睡眠呼吸暂停综合征合并症表型

Obstructive Sleep Apnea Syndrome Comorbidity Phenotypes in Primary Health Care Patients in Northern Greece.

作者信息

Ntenta Panagiota K, Vavougios Georgios D, Zarogiannis Sotirios G, Gourgoulianis Konstantinos I

机构信息

Department of Respiratory Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.

Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41500 Larissa, Greece.

出版信息

Healthcare (Basel). 2022 Feb 10;10(2):338. doi: 10.3390/healthcare10020338.

Abstract

BACKGROUND

Obstructive sleep apnea syndrome (OSAS) is a significant public health issue. In the general population, the prevalence varies from 10% to 50%. We aimed to phenotype comorbidities in OSAS patients referred to the primary health care (PHC) system.

METHODS

We enrolled 1496 patients referred to the PHC system for any respiratory- or sleep-related issue from November 2015 to September 2017. Some patients underwent polysomnography (PSG) evaluation in order to establish OSAS diagnosis. The final study population comprised 136 patients, and the Charlson comorbidity index was assessed. Categorical principal component analysis and TwoStep clustering was used to identify distinct clusters in the study population.

RESULTS

The analysis revealed three clusters: the first with moderate OSAS, obesity and a high ESS score without significant comorbidities; the second with severe OSAS, severe obesity with comorbidities and the highest ESS score; and the third with severe OSAS and obesity without comorbidities but with a high ESS score. The clusters differed in age ( < 0.005), apnea-hypopnea index, oxygen desaturation index, arousal index and respiratory and desaturation arousal index ( < 0.001).

CONCLUSIONS

Predictive comorbidity models may aid the early diagnosis of patients at risk in the context of PHC and pave the way for personalized treatment.

摘要

背景

阻塞性睡眠呼吸暂停综合征(OSAS)是一个重大的公共卫生问题。在普通人群中,患病率在10%至50%之间。我们旨在对转诊至初级卫生保健(PHC)系统的OSAS患者的合并症进行表型分析。

方法

我们纳入了2015年11月至2017年9月因任何呼吸或睡眠相关问题转诊至PHC系统的1496例患者。部分患者接受了多导睡眠图(PSG)评估以确诊OSAS。最终研究人群包括136例患者,并评估了Charlson合并症指数。采用分类主成分分析和两步聚类法在研究人群中识别不同的聚类。

结果

分析显示有三个聚类:第一个聚类为中度OSAS、肥胖且ESS评分高但无明显合并症;第二个聚类为重度OSAS、伴有合并症的重度肥胖且ESS评分最高;第三个聚类为重度OSAS和肥胖但无合并症但ESS评分高。这些聚类在年龄(<0.005)、呼吸暂停低通气指数、氧饱和度下降指数、觉醒指数以及呼吸和饱和度下降觉醒指数方面存在差异(<0.001)。

结论

预测合并症模型可能有助于在PHC背景下对有风险的患者进行早期诊断,并为个性化治疗铺平道路。

相似文献

8

本文引用的文献

10
Personalized Management Approach for OSA.OSA 的个性化管理方法。
Chest. 2018 Mar;153(3):744-755. doi: 10.1016/j.chest.2017.06.011. Epub 2017 Jun 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验