Suppr超能文献

基于能量模型布局的药物-药物相互作用网络聚类:社区分析和药物再利用。

Clustering drug-drug interaction networks with energy model layouts: community analysis and drug repurposing.

机构信息

"Victor Babeş" University of Medicine and Pharmacy Timişoara, Faculty of Pharmacy, Timişoara, 300041, Romania.

University Politehnica of Timişoara, Department of Computer and Information Technology, Timişoara, 300223, Romania.

出版信息

Sci Rep. 2016 Sep 7;6:32745. doi: 10.1038/srep32745.

Abstract

Analyzing drug-drug interactions may unravel previously unknown drug action patterns, leading to the development of new drug discovery tools. We present a new approach to analyzing drug-drug interaction networks, based on clustering and topological community detection techniques that are specific to complex network science. Our methodology uncovers functional drug categories along with the intricate relationships between them. Using modularity-based and energy-model layout community detection algorithms, we link the network clusters to 9 relevant pharmacological properties. Out of the 1141 drugs from the DrugBank 4.1 database, our extensive literature survey and cross-checking with other databases such as Drugs.com, RxList, and DrugBank 4.3 confirm the predicted properties for 85% of the drugs. As such, we argue that network analysis offers a high-level grasp on a wide area of pharmacological aspects, indicating possible unaccounted interactions and missing pharmacological properties that can lead to drug repositioning for the 15% drugs which seem to be inconsistent with the predicted property. Also, by using network centralities, we can rank drugs according to their interaction potential for both simple and complex multi-pathology therapies. Moreover, our clustering approach can be extended for applications such as analyzing drug-target interactions or phenotyping patients in personalized medicine applications.

摘要

分析药物-药物相互作用可能揭示以前未知的药物作用模式,从而开发新的药物发现工具。我们提出了一种新的方法来分析药物-药物相互作用网络,该方法基于特定于复杂网络科学的聚类和拓扑社区检测技术。我们的方法揭示了功能药物类别以及它们之间的复杂关系。使用基于模块性和能量模型布局的社区检测算法,我们将网络聚类与 9 个相关的药理学特性联系起来。在来自 DrugBank 4.1 数据库的 1141 种药物中,我们进行了广泛的文献调查,并与其他数据库(如 Drugs.com、RxList 和 DrugBank 4.3)进行了交叉检查,证实了 85%的药物的预测特性。因此,我们认为网络分析提供了对广泛药理学方面的高层次理解,表明可能存在未被发现的相互作用和缺失的药理学特性,这可能导致 15%的药物重新定位,这些药物似乎与预测的特性不一致。此外,通过使用网络中心性,我们可以根据药物的相互作用潜力对其进行排名,无论是简单的还是复杂的多病理治疗。此外,我们的聚类方法可以扩展到分析药物-靶点相互作用或在个性化医疗应用中对患者进行表型分析等应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71c5/5013446/2758b339e905/srep32745-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验