Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel.
Phys Rev E. 2017 Apr;95(4-1):042414. doi: 10.1103/PhysRevE.95.042414. Epub 2017 Apr 28.
Ecological communities in heterogeneous environments assemble through the combined effect of species interaction and migration. Understanding the effect of these processes on the community properties is central to ecology. Here we study these processes for a single community subject to migration from a pool of species, with population dynamics described by the generalized Lotka-Volterra equations. We derive exact results for the phase diagram describing the dynamical behaviors, and for the diversity and species abundance distributions. A phase transition is found from a phase where a unique globally attractive fixed point exists to a phase where multiple dynamical attractors exist, leading to history-dependent community properties. The model is shown to possess a symmetry that also establishes a connection with other well-known models.
异质环境中的生态群落通过物种相互作用和迁移的共同作用而形成。了解这些过程对群落特性的影响是生态学的核心。在这里,我们研究了一个单一的群落,该群落受到来自物种库的迁移影响,其种群动态由广义的Lotka-Volterra 方程描述。我们推导出了描述动力学行为的相图、多样性和物种丰度分布的精确结果。发现从存在唯一全局吸引固定点的相到存在多个动力学吸引子的相的相变,导致与历史相关的群落特性。该模型被证明具有一种对称性,这种对称性还与其他著名模型建立了联系。