Suppr超能文献

成纤维细胞生长因子(FGF)信号传导优化Wnt梯度以调节味蕾的模式形成。

FGF signaling refines Wnt gradients to regulate the patterning of taste papillae.

作者信息

Prochazkova Michaela, Häkkinen Teemu J, Prochazka Jan, Spoutil Frantisek, Jheon Andrew H, Ahn Youngwook, Krumlauf Robb, Jernvall Jukka, Klein Ophir D

机构信息

Department of Orofacial Sciences and Program in Craniofacial Biology, University of California San Francisco, San Francisco, CA 94143, USA.

Institute of Molecular Genetics of the CAS, v. v. i., Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, Division BIOCEV, Prumyslova 595, Vestec 252 42, Czech Republic.

出版信息

Development. 2017 Jun 15;144(12):2212-2221. doi: 10.1242/dev.148080. Epub 2017 May 15.

Abstract

The patterning of repeated structures is a major theme in developmental biology, and the inter-relationship between spacing and size of such structures is an unresolved issue. Fungiform papillae are repeated epithelial structures that house taste buds on the anterior tongue. Here, we report that FGF signaling is a crucial regulator of fungiform papillae development. We found that mesenchymal FGF10 controls the size of the papillary area, while overall patterning remains unchanged. Our results show that FGF signaling negatively affects the extent of canonical Wnt signaling, which is the main activation pathway during fungiform papillae development; however, this effect does not occur at the level of gene transcription. Rather, our experimental data, together with computational modeling, indicate that FGF10 modulates the range of Wnt effects, likely via induction of expression. We suggest that modification of the reach of Wnt signaling could be due to local changes in morphogen diffusion, representing a novel mechanism in this tissue context, and we propose that this phenomenon might be involved in a broader array of mammalian developmental processes.

摘要

重复结构的模式形成是发育生物学中的一个主要主题,而这些结构的间距和大小之间的相互关系是一个尚未解决的问题。菌状乳头是重复的上皮结构,位于舌前部,其中含有味蕾。在此,我们报告成纤维细胞生长因子(FGF)信号是菌状乳头发育的关键调节因子。我们发现间充质FGF10控制乳头区域的大小,而整体模式保持不变。我们的结果表明,FGF信号对经典Wnt信号的程度产生负面影响,而Wnt信号是菌状乳头发育过程中的主要激活途径;然而,这种影响并非发生在基因转录水平。相反,我们的实验数据与计算模型表明,FGF10可能通过诱导表达来调节Wnt效应的范围。我们认为Wnt信号作用范围的改变可能是由于形态发生素扩散的局部变化,这代表了这种组织环境中的一种新机制,并且我们提出这种现象可能涉及更广泛的哺乳动物发育过程。

相似文献

1
FGF signaling refines Wnt gradients to regulate the patterning of taste papillae.
Development. 2017 Jun 15;144(12):2212-2221. doi: 10.1242/dev.148080. Epub 2017 May 15.
2
FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size.
PLoS Genet. 2011 Jun;7(6):e1002098. doi: 10.1371/journal.pgen.1002098. Epub 2011 Jun 2.
3
Gpr177-mediated Wnt Signaling is Required for Fungiform Placode Initiation.
J Dent Res. 2014 Jun;93(6):582-8. doi: 10.1177/0022034514531985. Epub 2014 Apr 15.
4
Disruption of sonic hedgehog signaling alters growth and patterning of lingual taste papillae.
Dev Biol. 2003 Mar 15;255(2):263-77. doi: 10.1016/s0012-1606(02)00048-9.
5
Spacing patterns on tongue surface-gustatory papilla.
Int J Dev Biol. 2004;48(2-3):157-61. doi: 10.1387/ijdb.15272380.
6
Separate and distinctive roles for Wnt5a in tongue, lingual tissue and taste papilla development.
Dev Biol. 2012 Jan 1;361(1):39-56. doi: 10.1016/j.ydbio.2011.10.009. Epub 2011 Oct 15.
7
Sonic hedgehog exerts distinct, stage-specific effects on tongue and taste papilla development.
Dev Biol. 2004 Dec 15;276(2):280-300. doi: 10.1016/j.ydbio.2004.07.042.
10
Wnt-beta-catenin signaling initiates taste papilla development.
Nat Genet. 2007 Jan;39(1):106-12. doi: 10.1038/ng1932. Epub 2006 Nov 26.

引用本文的文献

1
Development of ectodermal and endodermal taste buds.
Dev Biol. 2025 Feb;518:20-27. doi: 10.1016/j.ydbio.2024.10.005. Epub 2024 Oct 30.
2
Hydrocortisone treatment as a tool to study conjunctival placode induction.
Dev Dyn. 2025 Jan;254(1):74-93. doi: 10.1002/dvdy.729. Epub 2024 Aug 3.
5
Intestinal precursors avoid being misinduced to liver cells by activating Cdx-Wnt inhibition cascade.
Proc Natl Acad Sci U S A. 2022 Nov 8;119(45):e2205110119. doi: 10.1073/pnas.2205110119. Epub 2022 Nov 3.
6
Targeting ligand-dependent wnt pathway dysregulation in gastrointestinal cancers through porcupine inhibition.
Pharmacol Ther. 2022 Oct;238:108179. doi: 10.1016/j.pharmthera.2022.108179. Epub 2022 Mar 28.
7
New developments in the biology of fibroblast growth factors.
WIREs Mech Dis. 2022 Jul;14(4):e1549. doi: 10.1002/wsbm.1549. Epub 2022 Feb 9.
8
The sense of taste: Development, regeneration, and dysfunction.
WIREs Mech Dis. 2022 May;14(3):e1547. doi: 10.1002/wsbm.1547. Epub 2021 Nov 30.
9
Taste buds are not derived from neural crest in mouse, chicken, and zebrafish.
Dev Biol. 2021 Mar;471:76-88. doi: 10.1016/j.ydbio.2020.12.013. Epub 2020 Dec 14.
10
Role of FGF10/FGFR2b Signaling in Mouse Digestive Tract Development, Repair and Regeneration Following Injury.
Front Cell Dev Biol. 2019 Dec 10;7:326. doi: 10.3389/fcell.2019.00326. eCollection 2019.

本文引用的文献

1
Signaling in tooth, hair, and mammary placodes.
Curr Top Dev Biol. 2015;111:421-59. doi: 10.1016/bs.ctdb.2014.11.013. Epub 2015 Jan 20.
2
Multiple Shh signaling centers participate in fungiform papilla and taste bud formation and maintenance.
Dev Biol. 2013 Oct 1;382(1):82-97. doi: 10.1016/j.ydbio.2013.07.022. Epub 2013 Aug 2.
4
Developing a sense of taste.
Semin Cell Dev Biol. 2013 Mar;24(3):200-9. doi: 10.1016/j.semcdb.2012.11.002. Epub 2012 Nov 24.
5
Lineage tracing of the endoderm during oral development.
Dev Dyn. 2012 Jul;241(7):1183-91. doi: 10.1002/dvdy.23804. Epub 2012 Jun 4.
6
Separate and distinctive roles for Wnt5a in tongue, lingual tissue and taste papilla development.
Dev Biol. 2012 Jan 1;361(1):39-56. doi: 10.1016/j.ydbio.2011.10.009. Epub 2011 Oct 15.
7
FGF signaling regulates the number of posterior taste papillae by controlling progenitor field size.
PLoS Genet. 2011 Jun;7(6):e1002098. doi: 10.1371/journal.pgen.1002098. Epub 2011 Jun 2.
8
Inhibition of Wnt signaling by Wise (Sostdc1) and negative feedback from Shh controls tooth number and patterning.
Development. 2010 Oct;137(19):3221-31. doi: 10.1242/dev.054668. Epub 2010 Aug 19.
9
The cell biology of taste.
J Cell Biol. 2010 Aug 9;190(3):285-96. doi: 10.1083/jcb.201003144.
10
Shaping morphogen gradients by proteoglycans.
Cold Spring Harb Perspect Biol. 2009 Sep;1(3):a002493. doi: 10.1101/cshperspect.a002493.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验