Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russia.
Pirogov Russian National Research Medical University, Ostrovitianov 1, Moscow 117997, Russia.
Sci Adv. 2017 Apr 26;3(4):e1602847. doi: 10.1126/sciadv.1602847. eCollection 2017 Apr.
Bioluminescent fungi are spread throughout the globe, but details on their mechanism of light emission are still scarce. Usually, the process involves three key components: an oxidizable luciferin substrate, a luciferase enzyme, and a light emitter, typically oxidized luciferin, and called oxyluciferin. We report the structure of fungal oxyluciferin, investigate the mechanism of fungal bioluminescence, and describe the use of simple synthetic α-pyrones as luciferins to produce multicolor enzymatic chemiluminescence. A high-energy endoperoxide is proposed as an intermediate of the oxidation of the native luciferin to the oxyluciferin, which is a pyruvic acid adduct of caffeic acid. Luciferase promiscuity allows the use of simple α-pyrones as chemiluminescent substrates.
发光真菌遍布全球,但关于其发光机制的细节仍很缺乏。通常,这个过程涉及三个关键组件:可氧化的荧光素底物、荧光素酶和光发射器,通常是氧化的荧光素,也称为氧化荧光素。我们报告了真菌氧化荧光素的结构,研究了真菌生物发光的机制,并描述了使用简单的合成α-吡喃酮作为荧光素来产生多色酶促化学发光。我们提出高能内过氧化物是天然荧光素氧化为氧化荧光素的中间体,氧化荧光素是咖啡酸的丙酮酸加合物。荧光素酶的混杂性允许使用简单的α-吡喃酮作为化学发光底物。