Larsen Ida Signe Bohse, Narimatsu Yoshiki, Joshi Hiren Jitendra, Yang Zhang, Harrison Oliver J, Brasch Julia, Shapiro Lawrence, Honig Barry, Vakhrushev Sergey Y, Clausen Henrik, Halim Adnan
From the Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark, and.
the Department of Biochemistry and Molecular Biophysics.
J Biol Chem. 2017 Jul 7;292(27):11586-11598. doi: 10.1074/jbc.M117.794487. Epub 2017 May 16.
Protein mannosylation is found in yeast and metazoans, and a family of conserved orthologous protein mannosyltransferases is believed to initiate this important post-translational modification. We recently discovered that the cadherin superfamily carries linked mannose (-Man) glycans at highly conserved residues in specific extracellular cadherin domains, and it was suggested that the function of E-cadherin was dependent on the Man glycans. Deficiencies in enzymes catalyzing Man biosynthesis, including the two human protein mannosyltransferases, POMT1 and POMT2, underlie a subgroup of congenital muscular dystrophies designated α-dystroglycanopathies, because deficient Man glycosylation of α-dystroglycan disrupts laminin interaction with α-dystroglycan and the extracellular matrix. To explore the functions of Man glycans on cadherins and protocadherins, we used a combinatorial gene-editing strategy in multiple cell lines to evaluate the role of the two POMTs initiating Man glycosylation and the major enzyme elongating Man glycans, the protein mannose β-1,2--acetylglucosaminyltransferase, POMGnT1. Surprisingly, mannosylation of cadherins and protocadherins does not require POMT1 and/or POMT2 in contrast to α-dystroglycan, and moreover, the Man glycans on cadherins are not elongated. Thus, the classical and evolutionarily conserved POMT mannosylation pathway is essentially dedicated to α-dystroglycan and a few other proteins, whereas a novel mannosylation process in mammalian cells is predicted to serve the large cadherin superfamily and other proteins.
蛋白质甘露糖基化存在于酵母和后生动物中,人们认为一个保守的直系同源蛋白质甘露糖基转移酶家族启动了这种重要的翻译后修饰。我们最近发现,钙黏蛋白超家族在特定细胞外钙黏蛋白结构域的高度保守残基上携带连接的甘露糖(-Man)聚糖,并且有人提出E-钙黏蛋白的功能依赖于甘露糖聚糖。催化甘露糖生物合成的酶存在缺陷,包括两种人类蛋白质甘露糖基转移酶POMT1和POMT2,是一组称为α-肌营养不良糖蛋白病的先天性肌营养不良症的病因,因为α-肌营养不良糖蛋白的甘露糖糖基化缺陷会破坏层粘连蛋白与α-肌营养不良糖蛋白及细胞外基质的相互作用。为了探究甘露糖聚糖在钙黏蛋白和原钙黏蛋白上的功能,我们在多个细胞系中使用了组合基因编辑策略,以评估启动甘露糖糖基化的两种POMT以及延长甘露糖聚糖的主要酶——蛋白质甘露糖β-1,2-N-乙酰葡糖胺基转移酶POMGnT1的作用。令人惊讶的是,与α-肌营养不良糖蛋白不同,钙黏蛋白和原钙黏蛋白的甘露糖基化不需要POMT1和/或POMT2,而且,钙黏蛋白上的甘露糖聚糖不会被延长。因此,经典且进化保守的POMT甘露糖基化途径基本上专门用于α-肌营养不良糖蛋白和其他一些蛋白质,而预计哺乳动物细胞中的一种新的甘露糖基化过程将作用于庞大的钙黏蛋白超家族和其他蛋白质。