Suppr超能文献

基于视觉空间注意的非注视混合脑机接口。

A gaze independent hybrid-BCI based on visual spatial attention.

机构信息

School of Engineering, Trinity Centre for Bioengineering and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.

出版信息

J Neural Eng. 2017 Aug;14(4):046006. doi: 10.1088/1741-2552/aa6bb2.

Abstract

OBJECTIVE

Brain-computer interfaces (BCI) use measures of brain activity to convey a user's intent without the need for muscle movement. Hybrid designs, which use multiple measures of brain activity, have been shown to increase the accuracy of BCIs, including those based on EEG signals reflecting covert attention. Our study examined whether incorporating a measure of the P3 response improved the performance of a previously reported attention-based BCI design that incorporates measures of steady-state visual evoked potentials (SSVEP) and alpha band modulations.

APPROACH

Subjects viewed stimuli consisting of two bi-laterally located flashing white boxes on a black background. Streams of letters were presented sequentially within the boxes, in random order. Subjects were cued to attend to one of the boxes without moving their eyes, and they were tasked with counting the number of target-letters that appeared within. P3 components evoked by target appearance, SSVEPs evoked by the flashing boxes, and power in the alpha band are modulated by covert attention, and the modulations can be used to classify trials as left-attended or right-attended.

MAIN RESULTS

We showed that classification accuracy was improved by including a P3 feature along with the SSVEP and alpha features (the inclusion of a P3 feature lead to a 9% increase in accuracy compared to the use of SSVEP and Alpha features alone). We also showed that the design improves the robustness of BCI performance to individual subject differences.

SIGNIFICANCE

These results demonstrate that incorporating multiple neurophysiological indices of covert attention can improve performance in a gaze-independent BCI.

摘要

目的

脑机接口(BCI)使用大脑活动的测量值来传达用户的意图,而无需肌肉运动。混合设计使用多种大脑活动测量值,已被证明可以提高 BCI 的准确性,包括基于反映隐蔽注意力的 EEG 信号的 BCI。我们的研究检验了在包含隐蔽注意的 BCI 设计中纳入 P3 响应测量值是否可以提高先前报告的基于注意力的 BCI 设计的性能,该设计结合了稳态视觉诱发电位(SSVEP)和 alpha 频带调制的测量值。

方法

受测者观看由黑色背景上两个双侧闪烁的白色方块组成的刺激物。字母流在盒子内随机顺序呈现。受测者被提示不移动眼睛而专注于一个盒子,并负责计算出现的目标字母的数量。目标出现时引起的 P3 成分、闪烁盒子引起的 SSVEP 和 alpha 频带的功率被隐蔽注意力调制,并且调制可以用于将试验分类为左注视或右注视。

主要结果

我们表明,通过包含 P3 特征与 SSVEP 和 alpha 特征一起使用,可以提高分类准确性(与仅使用 SSVEP 和 Alpha 特征相比,包含 P3 特征可使准确性提高 9%)。我们还表明,该设计提高了 BCI 性能对个体差异的稳健性。

意义

这些结果表明,结合多个隐蔽注意力的神经生理指标可以提高无注视 BCI 的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验