Suppr超能文献

优化基于特征的注意力在频域标记脑电图数据中的分类。

Optimising the classification of feature-based attention in frequency-tagged electroencephalography data.

机构信息

The University of Queensland, Queensland Brain Institute, St Lucia, 4072, Australia.

The University of Queensland, School of Information Technology and Electrical Engineering, St Lucia, Australia.

出版信息

Sci Data. 2022 Jun 13;9(1):296. doi: 10.1038/s41597-022-01398-z.

Abstract

Brain-computer interfaces (BCIs) are a rapidly expanding field of study and require accurate and reliable real-time decoding of patterns of neural activity. These protocols often exploit selective attention, a neural mechanism that prioritises the sensory processing of task-relevant stimulus features (feature-based attention) or task-relevant spatial locations (spatial attention). Within the visual modality, attentional modulation of neural responses to different inputs is well indexed by steady-state visual evoked potentials (SSVEPs). These signals are reliably present in single-trial electroencephalography (EEG) data, are largely resilient to common EEG artifacts, and allow separation of neural responses to numerous concurrently presented visual stimuli. To date, efforts to use single-trial SSVEPs to classify visual attention for BCI control have largely focused on spatial attention rather than feature-based attention. Here, we present a dataset that allows for the development and benchmarking of algorithms to classify feature-based attention using single-trial EEG data. The dataset includes EEG and behavioural responses from 30 healthy human participants who performed a feature-based motion discrimination task on frequency tagged visual stimuli.

摘要

脑机接口(BCI)是一个快速发展的研究领域,需要对神经活动模式进行准确可靠的实时解码。这些协议通常利用选择性注意,这是一种将感觉处理优先于任务相关刺激特征(基于特征的注意)或任务相关空间位置(空间注意)的神经机制。在视觉模态中,对不同输入的神经反应的注意调制很好地由稳态视觉诱发电位(SSVEP)来索引。这些信号在单次脑电图(EEG)数据中可靠存在,对常见的 EEG 伪影有很大的抗干扰能力,并且可以分离对许多同时呈现的视觉刺激的神经反应。迄今为止,使用单次 SSVEP 对 BCI 控制进行视觉注意力分类的努力主要集中在空间注意力上,而不是基于特征的注意力上。在这里,我们提供了一个数据集,允许开发和基准测试使用单次 EEG 数据对基于特征的注意力进行分类的算法。该数据集包括 30 名健康人类参与者的 EEG 和行为反应,他们在频率标记的视觉刺激上执行基于特征的运动辨别任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/851b/9192640/dcaf3acc331c/41597_2022_1398_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验