Suppr超能文献

在单胞 ZnInS 层中缺陷介导的电子-空穴分离,用于增强太阳能驱动的 CO 还原。

Defect-Mediated Electron-Hole Separation in One-Unit-Cell ZnInS Layers for Boosted Solar-Driven CO Reduction.

机构信息

Hefei National Laboratory for Physical Sciences at Microscale, CAS Center for Excellence in Nanoscience, International Center for Quantum Design of Functional Materials, Department of Physics, Synergetic Innovation Center of Quantum Information and Quantum Physics, Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science & Technology of China , Hefei, Anhui 230026, PR China.

出版信息

J Am Chem Soc. 2017 Jun 7;139(22):7586-7594. doi: 10.1021/jacs.7b02290. Epub 2017 May 23.

Abstract

The effect of defects on electron-hole separation is not always clear and is sometimes contradictory. Herein, we initially built clear models of two-dimensional atomic layers with tunable defect concentrations, and hence directly disclose the defect type and distribution at atomic level. As a prototype, defective one-unit-cell ZnInS atomic layers are successfully synthesized for the first time. Aberration-corrected scanning transmission electron microscopy directly manifests their distinct zinc vacancy concentrations, confirmed by positron annihilation spectrometry and electron spin resonance analysis. Density-functional calculations reveal that the presence of zinc vacancies ensures higher charge density and efficient carrier transport, verified by ultrafast photogenerated electron transfer time of ∼15 ps from the conduction band of ZnInS to the trap states. Ultrafast transient absorption spectroscopy manifests the higher zinc vacancy concentration that allows for ∼1.7-fold increase in average recovery lifetime, confirmed by surface photovoltage spectroscopy and PL spectroscopy analysis, which ensures promoted carrier separation rates. As a result, the one-unit-cell ZnInS layers with rich zinc vacancies exhibit a carbon monoxide formation rate of 33.2 μmol g h, roughly 3.6 times higher than that of the one-unit-cell ZnInS layers with poor zinc vacancies, while the former's photocatalytic activity shows negligible loss after 24 h photocatalysis. This present work uncovers the role of defects in affecting electron-hole separation at atomic level, opening new opportunities for achieving highly efficient solar CO reduction performances.

摘要

缺陷对电子-空穴分离的影响并不总是明确的,有时甚至是矛盾的。在此,我们最初构建了具有可调缺陷浓度的二维原子层的清晰模型,从而直接揭示了原子级别的缺陷类型和分布。作为一个原型,首次成功合成了具有缺陷的单胞 ZnInS 原子层。通过像差校正扫描透射电子显微镜直接显示其不同的锌空位浓度,通过正电子湮没谱和电子自旋共振分析得到证实。密度泛函计算表明,锌空位的存在确保了更高的电荷密度和有效的载流子输运,这通过 ZnInS 导带到陷阱态的超快光生电子转移时间约为 15 ps 得到验证。超快瞬态吸收光谱表明,较高的锌空位浓度可使平均恢复寿命增加约 1.7 倍,这通过表面光电压谱和 PL 光谱分析得到证实,这确保了载流子分离速率的提高。结果,具有丰富锌空位的单胞 ZnInS 层表现出的一氧化碳形成速率为 33.2 μmol g h,大约是锌空位较差的单胞 ZnInS 层的 3.6 倍,而前者的光催化活性在 24 小时的光催化后几乎没有损失。本工作揭示了缺陷在原子水平上影响电子-空穴分离的作用,为实现高效太阳能 CO 还原性能开辟了新的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验