Suppr超能文献

支持患者与医护人员协作,利用饮食和症状日记识别个体触发因素。

Supporting Patient-Provider Collaboration to Identify Individual Triggers using Food and Symptom Journals.

作者信息

Schroeder Jessica, Hoffswell Jane, Chung Chia-Fang, Fogarty James, Munson Sean, Zia Jasmine

机构信息

Computer Science & Engineering, DUB Group, University of Washington.

Human Centered Design & Engineering, DUB Group, University of Washington.

出版信息

CSCW Conf Comput Support Coop Work. 2017 Feb 25;2017:1726-1739. doi: 10.1145/2998181.2998276.

Abstract

Patient-generated data can allow patients and providers to collaboratively develop accurate diagnoses and actionable treatment plans. Unfortunately, patients and providers often lack effective support to make use of such data. We examine patient-provider collaboration to interpret patient-generated data. We focus on irritable bowel syndrome (IBS), a chronic illness in which particular foods can exacerbate symptoms. IBS management often requires patient-provider collaboration using a patient's food and symptom journal to identify the patient's triggers. We contribute interactive visualizations to support exploration of such journals, as well as an examination of patient-provider collaboration in interpreting the journals. Drawing upon individual and collaborative interviews with patients and providers, we find that collaborative review helps improve data comprehension and build mutual trust. We also find a desire to use tools like our interactive visualizations within and beyond clinic appointments. We discuss these findings and present guidance for the design of future tools.

摘要

患者生成的数据可以使患者和医疗服务提供者共同制定准确的诊断和可行的治疗方案。不幸的是,患者和医疗服务提供者在利用此类数据时往往缺乏有效的支持。我们研究患者与医疗服务提供者之间的协作,以解读患者生成的数据。我们重点关注肠易激综合征(IBS),这是一种特定食物会加重症状的慢性疾病。肠易激综合征的管理通常需要患者与医疗服务提供者协作,利用患者的饮食和症状日志来确定患者的触发因素。我们提供交互式可视化工具以支持对此类日志的探索,并对患者与医疗服务提供者在解读日志方面的协作进行研究。通过对患者和医疗服务提供者进行的个人访谈及合作访谈,我们发现协作性审查有助于提高数据理解并建立相互信任。我们还发现,无论是在门诊预约期间还是之外,都有人希望使用我们的交互式可视化等工具。我们讨论这些发现,并为未来工具的设计提供指导。

相似文献

引用本文的文献

9
The Influence of Personal Health Data on the Health Coaching Process.个人健康数据对健康指导过程的影响。
Front Big Data. 2022 Jun 14;5:678061. doi: 10.3389/fdata.2022.678061. eCollection 2022.

本文引用的文献

5
The Future of Patient Engagement in the Governance of Shared Data.患者参与共享数据治理的未来。
EGEMS (Wash DC). 2016 Mar 30;4(2):1214. doi: 10.13063/2327-9214.1214. eCollection 2016.
7
A framework for self-experimentation in personalized health.个性化健康自我实验的框架。
J Am Med Inform Assoc. 2016 May;23(3):440-8. doi: 10.1093/jamia/ocv150. Epub 2015 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验