Bhamla M Saad, Chai Chew, Àlvarez-Valenzuela Marco A, Tajuelo Javier, Fuller Gerald G
Stanford University, Department of Bioengineering, Stanford, 94305, United States of America.
Stanford University, Department of Chemical Engineering, Stanford, 94305, United States of America.
PLoS One. 2017 May 17;12(5):e0175753. doi: 10.1371/journal.pone.0175753. eCollection 2017.
Thin liquid films are central to everyday life. They are ubiquitous in modern technology (pharmaceuticals, coatings), consumer products (foams, emulsions) and also serve vital biological functions (tear film of the eye, pulmonary surfactants in the lung). A common feature in all these examples is the presence of surface-active molecules at the air-liquid interface. Though they form only molecular-thin layers, these surfactants produce complex surface stresses on the free surface, which have important consequences for the dynamics and stability of the underlying thin liquid film. Here we conduct simple thinning experiments to explore the fundamental mechanisms that allow the surfactant molecules to slow the gravity-driven drainage of the underlying film. We present a simple model that works for both soluble and insoluble surfactant systems in the limit of negligible adsorption-desorption dynamics. We show that surfactants with finite surface rheology influence bulk flow through viscoelastic interfacial stresses, while surfactants with inviscid surfaces achieve stability through opposing surface-tension induced Marangoni flows.
薄液膜在日常生活中至关重要。它们在现代技术(制药、涂料)、消费品(泡沫、乳液)中无处不在,并且还发挥着重要的生物学功能(眼睛的泪膜、肺部的肺表面活性剂)。所有这些例子的一个共同特征是在气液界面存在表面活性分子。尽管它们仅形成分子薄层,但这些表面活性剂会在自由表面产生复杂的表面应力,这对下层薄液膜的动力学和稳定性具有重要影响。在这里,我们进行简单的变薄实验,以探索使表面活性剂分子减缓下层液膜重力驱动排水的基本机制。我们提出了一个简单的模型,该模型在吸附 - 解吸动力学可忽略不计的极限情况下适用于可溶性和不可溶性表面活性剂系统。我们表明,具有有限表面流变学的表面活性剂通过粘弹性界面应力影响整体流动,而具有无粘性表面的表面活性剂通过对抗表面张力引起的马兰戈尼流动实现稳定性。