Uncini Antonino, Ippoliti Luigi, Shahrizaila Nortina, Sekiguchi Yukari, Kuwabara Satoshi
Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", via Luigi Polacchi 11, 66100 Chieti, Italy.
Department of Economics, University "G. d'Annunzio", viale Pindaro 42, 65127 Pescara, Italy.
Clin Neurophysiol. 2017 Jul;128(7):1176-1183. doi: 10.1016/j.clinph.2017.03.048. Epub 2017 Apr 20.
To optimize the electrodiagnosis of Guillain-Barré syndrome (GBS) subtypes at first study.
The reference electrodiagnosis was obtained in 53 demyelinating and 45 axonal GBS patients on the basis of two serial studies and results of anti-ganglioside antibodies assay. We retrospectively employed sparse linear discriminant analysis (LDA), two existing electrodiagnostic criteria sets (Hadden et al., 1998; Rajabally et al., 2015) and one we propose that additionally evaluates duration of motor responses, sural sparing pattern and defines reversible conduction failure (RCF) in motor and sensory nerves at second study.
At first study the misclassification error rates, compared to reference diagnoses, were: 15.3% for sparse LDA, 30% for our criteria, 45% for Rajabally's and 48% for Hadden's. Sparse LDA identified seven most powerful electrophysiological variables differentiating demyelinating and axonal subtypes and assigned to each patient the diagnostic probability of belonging to either subtype. At second study 46.6% of axonal GBS patients showed RCF in two motor and 8.8% in two sensory nerves.
Based on a single study, sparse LDA showed the highest diagnostic accuracy. RCF is present in a considerable percentage of axonal patients.
Sparse LDA, a supervised statistical method of classification, should be introduced in the electrodiagnostic practice.
在首次研究中优化吉兰-巴雷综合征(GBS)亚型的电诊断。
基于两项系列研究及抗神经节苷脂抗体检测结果,对53例脱髓鞘型和45例轴索性GBS患者进行了参考电诊断。在第二次研究中,我们回顾性地采用了稀疏线性判别分析(LDA)、两个现有的电诊断标准集(Hadden等人,1998年;Rajabally等人,2015年)以及我们提出的一个额外评估运动反应持续时间、腓肠神经保留模式并定义运动和感觉神经可逆性传导阻滞(RCF)的标准集。
在首次研究中,与参考诊断相比,误分类错误率分别为:稀疏LDA为15.3%,我们的标准为30%,Rajabally标准为45%,Hadden标准为48%。稀疏LDA确定了七个区分脱髓鞘型和轴索性亚型的最有力电生理变量,并为每位患者分配了属于任一亚型的诊断概率。在第二次研究中,46.6%的轴索性GBS患者在两条运动神经中出现RCF,8.8%在两条感觉神经中出现RCF。
基于单一研究,稀疏LDA显示出最高的诊断准确性。相当比例的轴索性患者存在RCF。
稀疏LDA作为一种有监督的统计分类方法,应引入电诊断实践中。