Suppr超能文献

用于可见光波长范围内皮升体积生物化学和等离子体传感的杯形纳米天线阵列。

Cup-Shaped Nanoantenna Arrays for Zeptoliter Volume Biochemistry and Plasmonic Sensing in the Visible Wavelength Range.

机构信息

Department of Information Engineering, University of Parma , Parco Area delle Scienze 181/A, 43124 Parma, Italy.

Applied Plasmonics Laboratory, Centre for Micro-Photonics, Swinburne University of Technology , P.O. Box 218, Hawthorn, VIC 3122, Australia.

出版信息

ACS Appl Mater Interfaces. 2017 Jun 7;9(22):19082-19091. doi: 10.1021/acsami.7b02749. Epub 2017 May 30.

Abstract

Although three-dimensional shaping of metallic nanostructures is an important strategy for control and manipulation of localized surface plasmon resonance (LSPR), its implementation in high-throughput, on-chip fabrication of plasmonic devices remains challenging. Here, we demonstrate nanocontact-based large-area fabrication of a novel, LSPR-active Au architecture consisting of periodic arrays of reduced-symmetry nanoantennas having sub-50 nm, out-of-plane features. Namely, by combining nanosphere and molecular self-assembly processes, we have patterned evaporated polycrystalline Au films for chemical etching of nanocups with controlled aspect ratios (outer diameter d = 100 nm and void volumes = 18 or 39 zL). The resulting nanoantennas were highly ordered, forming a hexagonal lattice structure over centimeter-sized glass substrates, and they displayed characteristic LSPR absorption in the visible/near-infrared spectral range. Theoretical simulations indicated electric field confinement and enhancement patterns located not only around the rims but also inside the nanocups. We also explored how these patterns and the overall spectral characteristics depended on the nanocup aspect ratio as well as on electric field coupling in the arrays. We have successfully tested the fabricated architecture for detection of stepwise immobilization and interactions of proteins, thus demonstrating its potential for both nanoscopic scaffolding and sensing of biomolecular assemblies.

摘要

尽管三维金属纳米结构的成型是控制和操纵局域表面等离子体共振(LSPR)的重要策略,但在高通量、芯片级等离子体器件制造中实现这一目标仍然具有挑战性。在这里,我们展示了基于纳米接触的大面积制造新型 LSPR 活性 Au 结构,该结构由具有亚 50nm 面外特征的具有低对称性纳米天线的周期性阵列组成。具体来说,我们通过结合纳米球和分子自组装工艺,对蒸发的多晶 Au 薄膜进行图案化,以进行具有可控纵横比(外径 d = 100nm 和空体积 = 18 或 39 zL)的纳米杯的化学蚀刻。得到的纳米天线高度有序,在厘米级大小的玻璃衬底上形成了六边形晶格结构,并且在可见/近红外光谱范围内显示出特征的 LSPR 吸收。理论模拟表明,电场限制和增强模式不仅位于边缘周围,而且位于纳米杯中。我们还研究了这些模式以及整体光谱特性如何取决于纳米杯的纵横比以及阵列中的电场耦合。我们已经成功地测试了所制造的结构用于检测蛋白质的逐步固定和相互作用,从而证明了其在纳米级支架和生物分子组装的传感方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验