Suppr超能文献

从全国性公共健康暴露组学数据和现代计算分析中建立的多因素肥胖模型。

A multifactorial obesity model developed from nationwide public health exposome data and modern computational analyses.

机构信息

Department of Political Science, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA; Department of Public Health, Texas Tech University Health Science Center, 3601 4th Street, Lubbock, TX 79430, USA; High Performance Computing Center, Information Technology Division, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA.

Department of Sociology, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN 37209, USA.

出版信息

Obes Res Clin Pract. 2017 Sep-Oct;11(5):522-533. doi: 10.1016/j.orcp.2017.05.001. Epub 2017 May 18.

Abstract

STATEMENT OF THE PROBLEM

Obesity is both multifactorial and multimodal, making it difficult to identify, unravel and distinguish causative and contributing factors. The lack of a clear model of aetiology hampers the design and evaluation of interventions to prevent and reduce obesity.

METHODS

Using modern graph-theoretical algorithms, we are able to coalesce and analyse thousands of inter-dependent variables and interpret their putative relationships to obesity. Our modelling is different from traditional approaches; we make no a priori assumptions about the population, and model instead based on the actual characteristics of a population. Paracliques, noise-resistant collections of highly-correlated variables, are differentially distilled from data taken over counties associated with low versus high obesity rates. Factor analysis is then applied and a model is developed.

RESULTS AND CONCLUSIONS

Latent variables concentrated around social deprivation, community infrastructure and climate, and especially heat stress were connected to obesity. Infrastructure, environment and community organisation differed in counties with low versus high obesity rates. Clear connections of community infrastructure with obesity in our results lead us to conclude that community level interventions are critical. This effort suggests that it might be useful to study and plan interventions around community organisation and structure, rather than just the individual, to combat the nation's obesity epidemic.

摘要

问题陈述

肥胖是多因素和多模式的,这使得识别、揭示和区分因果和促成因素变得困难。病因学缺乏明确的模型阻碍了预防和减少肥胖的干预措施的设计和评估。

方法

我们使用现代图论算法,能够合并和分析数千个相互依赖的变量,并解释它们与肥胖的潜在关系。我们的建模与传统方法不同;我们不对人群做出先验假设,而是根据人群的实际特征进行建模。从与肥胖率低和高的县相关的数据中,分别提取出抗噪的高度相关变量的聚集(paracliques)。然后应用因子分析并开发模型。

结果和结论

集中在社会贫困、社区基础设施和气候,特别是热应激周围的潜在变量与肥胖有关。基础设施、环境和社区组织在肥胖率低和高的县有所不同。我们的研究结果中社区基础设施与肥胖之间的明确联系使我们得出结论,社区层面的干预措施至关重要。这一努力表明,围绕社区组织和结构而不是个体来研究和规划干预措施,以对抗全国的肥胖流行,可能是有用的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d56/5597453/321a8cedf2bb/nihms876894f1.jpg

相似文献

7
Obesity: a public health approach.肥胖:公共健康方法。
Psychiatr Clin North Am. 2011 Dec;34(4):895-909. doi: 10.1016/j.psc.2011.08.001. Epub 2011 Oct 5.
10
[Inequalities in health in Italy].[意大利的健康不平等现象]
Epidemiol Prev. 2004 May-Jun;28(3 Suppl):i-ix, 1-161.

本文引用的文献

1
Lower Bounds on Paraclique Density.偏斜密度的下界
Discrete Appl Math. 2016 May 11;204:208-212. doi: 10.1016/j.dam.2015.11.010.
2
Modeling social norms and social influence in obesity.肥胖领域的社会规范与社会影响建模
Curr Epidemiol Rep. 2015 Mar 1;2(1):71-79. doi: 10.1007/s40471-014-0032-2. Epub 2015 Jan 13.
6
Scalable combinatorial tools for health disparities research.用于健康差异研究的可扩展组合工具。
Int J Environ Res Public Health. 2014 Oct 10;11(10):10419-43. doi: 10.3390/ijerph111010419.
7
Systems science: a tool for understanding obesity.系统科学:一种理解肥胖症的工具。
Am J Public Health. 2014 Jul;104(7):1156. doi: 10.2105/AJPH.2014.302082. Epub 2014 May 15.
8
Obesity: upsetting the public health balance.肥胖:扰乱公共卫生平衡。
Asia Pac J Public Health. 2013 Mar;25(2):121-3. doi: 10.1177/1010539513479003.
9
Social network analysis: foundations and frontiers on advantage.社会网络分析:优势的基础与前沿。
Annu Rev Psychol. 2013;64:527-47. doi: 10.1146/annurev-psych-113011-143828.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验