Suppr超能文献

对αvβ3整合素具有高亲和力的新型线性肽用于精确肿瘤识别

Novel Linear Peptides with High Affinity to αvβ3 Integrin for Precise Tumor Identification.

作者信息

Ma Yi, Ai Guanhua, Zhang Congying, Zhao Menglu, Dong Xue, Han Zhihao, Wang Zhaohui, Zhang Min, Liu Yuxi, Gao Weidong, Li Siwen, Gu Yueqing

机构信息

State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 24 Tongjia Road, 210009 (China).

出版信息

Theranostics. 2017 Apr 6;7(6):1511-1523. doi: 10.7150/thno.18401. eCollection 2017.

Abstract

Development of alternative linear peptides for targeting αvβ3 integrin has attracted much attention, as the traditional peptide ligand, cyclic RGD, is limited by inferior water-solubility and complex synthesis. Using pharmacophore-based virtual screening and high-throughput molecular docking, we identified two novel linear small peptides RWr and RWrNM with high affinity and specificity to αvβ3 integrin. The competitive binding with cyclic RGD (c(RGDyK)) and cellular uptake related to the integrin expression levels verified their affinity to αvβ3 integrin. The intermolecular interaction measurement and dynamics simulation demonstrated the high binding affinity and stability, especially for RWrNM. peptide-guided tumor imaging and targeted therapy further confirmed their specificity. Results indicated that the newly identified small linear peptide RWrNM, with high affinity and specificity to αvβ3 integrin, better water-solubility, and simplified synthetic process, could overcome limitations of the current cyclic RGD peptides, paving the way for diverse use in diagnosis and therapy.

摘要

由于传统的肽配体环状RGD受限于较差的水溶性和复杂的合成过程,开发用于靶向αvβ3整合素的新型线性肽备受关注。利用基于药效团的虚拟筛选和高通量分子对接,我们鉴定出两种对αvβ3整合素有高亲和力和特异性的新型线性小肽RWr和RWrNM。与环状RGD(c(RGDyK))的竞争性结合以及与整合素表达水平相关的细胞摄取证实了它们对αvβ3整合素的亲和力。分子间相互作用测量和动力学模拟证明了高结合亲和力和稳定性,尤其是对于RWrNM。肽引导的肿瘤成像和靶向治疗进一步证实了它们的特异性。结果表明,新鉴定的线性小肽RWrNM对αvβ3整合素有高亲和力和特异性、更好的水溶性以及简化的合成过程,能够克服当前环状RGD肽的局限性,为其在诊断和治疗中的多样化应用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验