Department of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
Physik Department and Walter Schottky Institute, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany.
Nat Mater. 2017 Aug;16(8):849-856. doi: 10.1038/nmat4909. Epub 2017 May 22.
Establishing precise control over the shape and the interactions of the microscopic building blocks is essential for design of macroscopic soft materials with novel structural, optical and mechanical properties. Here, we demonstrate robust assembly of DNA origami filaments into cholesteric liquid crystals, one-dimensional supramolecular twisted ribbons and two-dimensional colloidal membranes. The exquisite control afforded by the DNA origami technology establishes a quantitative relationship between the microscopic filament structure and the macroscopic cholesteric pitch. Furthermore, it also enables robust assembly of one-dimensional twisted ribbons, which behave as effective supramolecular polymers whose structure and elastic properties can be precisely tuned by controlling the geometry of the elemental building blocks. Our results demonstrate the potential synergy between DNA origami technology and colloidal science, in which the former allows for rapid and robust synthesis of complex particles, and the latter can be used to assemble such particles into bulk materials.
精确控制微观构建块的形状和相互作用对于设计具有新颖结构、光学和机械性能的宏观软材料至关重要。在这里,我们展示了 DNA 折纸丝的稳定组装,形成了胆甾相液晶、一维超分子扭结丝带和二维胶体膜。DNA 折纸技术提供的精确控制建立了微观丝结构和宏观胆甾晶间距之间的定量关系。此外,它还能够稳定地组装一维扭结丝带,这些扭结丝带作为有效的超分子聚合物,其结构和弹性性质可以通过控制基本构建块的几何形状来精确调节。我们的结果表明了 DNA 折纸技术和胶体科学之间的潜在协同作用,前者允许快速和稳健地合成复杂颗粒,而后者可用于将这些颗粒组装成大块材料。