Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université-CNRS 7591, Bâtiment Lavoisier, 15 Rue Jean de Baïf, 75205 Cedex 13, Paris, France.
ACS Appl Mater Interfaces. 2017 Jun 14;9(23):19894-19899. doi: 10.1021/acsami.7b04349. Epub 2017 Jun 2.
We analyze here, in the framework of heterogeneous molecular catalysis, the reasons for the occurrence or nonoccurrence of volcanoes upon plotting the kinetics of the catalytic reaction versus the stabilization free energy of the primary intermediate of the catalytic process. As in the case of homogeneous molecular catalysis or catalysis by surface-active metallic sites, a strong motivation of such studies relates to modern energy challenges, particularly those involving small molecules, such as water, hydrogen, oxygen, proton, and carbon dioxide. This motivation is particularly pertinent for what concerns heterogeneous molecular catalysis, since it is commonly preferred to homogeneous molecular catalysis by the same molecules if only for chemical separation purposes and electrolytic cell architecture. As with the two other catalysis modes, the main drawback of the volcano plot approach is the basic assumption that the kinetic responses depend on a single descriptor, viz., the stabilization free energy of the primary intermediate. More comprehensive approaches, investigating the responses to the maximal number of experimental factors, and conveniently expressed as catalytic Tafel plots, should clearly be preferred. This is more so in the case of heterogeneous molecular catalysis in that additional transport factors in the supporting film may additionally affect the current-potential responses. This is attested by the noteworthy presence of maxima in catalytic Tafel plots as well as their dependence upon the cyclic voltammetric scan rate.
我们在这里在异相分子催化的框架内,通过将催化反应的动力学与催化过程的主要中间体的稳定自由能作图,分析了火山现象发生或不发生的原因。与均相分子催化或表面活性金属位的催化一样,此类研究的一个强烈动机与现代能源挑战有关,特别是涉及小分子,如水、氢、氧、质子和二氧化碳的挑战。这种动机对于异相分子催化尤为重要,因为仅出于化学分离目的和电解池结构的原因,通常优选与相同分子的均相分子催化。与另外两种催化模式一样,火山图方法的主要缺点是基本假设,即动力学响应取决于单个描述符,即主要中间体的稳定自由能。更全面的方法,研究对最大数量的实验因素的响应,并方便地表示为催化塔菲尔图,显然应优先选择。在异相分子催化的情况下更是如此,因为支撑膜中的附加传输因素可能会额外影响电流-电位响应。这可以通过在催化塔菲尔图中存在显著的最大值以及它们对循环伏安扫描速率的依赖性来证明。