Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
Acc Chem Res. 2019 Dec 17;52(12):3432-3441. doi: 10.1021/acs.accounts.9b00439. Epub 2019 Nov 12.
The efficient interconversion of electrical and chemical energy requires catalysts capable of accelerating multielectron reactions at or near electrified interfaces. These reactions can be performed at metallic surface sites on heterogeneous electrocatalysts or through redox mediation at molecular electrocatalysts. The relative ease of synthesis and characterization for homogeneous catalysts has allowed for molecular-level control over the active site and permitted systematic tuning of activity and selectivity. Similar control is difficult to achieve with heterogeneous electrocatalysts, because they typically exhibit a distribution of active site geometries and local electronic structures, which are challenging to modify with molecular precision. However, metallic heterogeneous electrocatalysts benefit from a continuum of electronic states that distribute the redox burden of multielectron transformations, enabling more efficient catalysis. We envisioned that we could combine the attractive properties of molecular and heterogeneous catalysts by integrating tunable molecular active sites into the delocalized band states of a conductive solid. The Surendranath group has developed a class of electrocatalysts in which molecules are strongly electronically coupled to graphitic electrodes through a conductive, aromatic pyrazine linkage such that they behave like metallic surface active sites. In this Account, we discuss the dual role of these graphite-conjugated catalysts (GCCs) as a platform with which to answer molecular-level questions of metallic active sites and as a tool with which to fundamentally alter the mechanism and enhance the performance of molecular active sites. We begin by describing the electrochemical and spectroscopic studies that demonstrated that GCC sites behave like metallic active sites rather than simply as redox mediators attached to electrode surfaces. We then discuss how electrochemical studies of a series of graphite-conjugated acids enabled the construction of a molecular model for the thermochemistry of proton-coupled electron transfer reactions at GCC sites based on the p of the molecular analogue of the conjugated site and the potential of zero free charge of the electrode. In the final section, we discuss the effects of graphite conjugation on the mechanism and rate of oxygen reduction, hydrogen evolution, and carbon dioxide reduction catalysis across four different GCC platforms involving N-heterocycle, organometallic, and metalloporphyrin active sites. We discuss how molecular-level tuning at graphite-conjugated active sites directly correlates to changes in catalytic activity for the oxygen reduction reaction. We demonstrate that graphite-conjugated porphyrins show enhanced catalytic oxygen reduction activity over amide-linked porphyrins. Lastly, we describe how catalysis at graphite-conjugated sites proceeds through mechanisms involving electron transfer and substrate activation, in stark contrast to the mechanisms observed for molecular analogues. Overall, we showcase how GCCs provide a rich platform for controlling heterogeneous catalysis at the molecular level.
电化学反应和化学能的高效转化需要能够在带电界面处或附近加速多电子反应的催化剂。这些反应可以在多相电催化剂的金属表面位点上进行,或者通过分子电催化剂的氧化还原介导进行。均相催化剂的合成和表征相对容易,允许对活性位点进行分子水平的控制,并允许系统地调整活性和选择性。对于多相电催化剂来说,这种类似的控制是难以实现的,因为它们通常表现出活性位点几何形状和局部电子结构的分布,这些分布很难通过分子精度来修饰。然而,金属多相电催化剂受益于连续的电子态,这些电子态分布了多电子转化的氧化还原负担,从而实现更有效的催化。我们设想,我们可以通过将可调谐的分子活性位点整合到导电固体的离域带态中,将分子和多相催化剂的吸引人的特性结合起来。Surendranath 小组开发了一类电催化剂,其中分子通过导电的芳香性吡嗪键与石墨电极强烈电子耦合,使得它们的行为类似于金属表面活性位点。在本综述中,我们讨论了这些石墨共轭催化剂(GCC)作为一个平台的双重作用,该平台可用于回答关于金属活性位点的分子水平问题,也可用于从根本上改变机制并提高分子活性位点的性能。我们首先描述了电化学和光谱研究,这些研究表明 GCC 位点的行为类似于金属活性位点,而不是简单地作为附着在电极表面上的氧化还原介体。然后,我们讨论了一系列石墨共轭酸的电化学研究如何使我们能够根据共轭位点的分子类似物的 p 和电极的零自由电荷电位构建 GCC 位点上质子耦合电子转移反应热化学的分子模型。在最后一节中,我们讨论了石墨共轭对氧还原、析氢和二氧化碳还原催化的机制和速率的影响,涉及四个不同的 GCC 平台,包括杂环、有机金属和金属卟啉活性位点。我们讨论了在石墨共轭活性位点的分子水平调谐如何直接与氧还原反应的催化活性变化相关。我们证明,石墨共轭卟啉的氧还原催化活性高于酰胺连接的卟啉。最后,我们描述了在石墨共轭位点进行的催化反应如何通过涉及电子转移和底物活化的机制进行,这与分子类似物观察到的机制形成鲜明对比。总的来说,我们展示了 GCC 如何为在分子水平上控制多相催化提供了一个丰富的平台。