Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba).
Int J Neuropsychopharmacol. 2017 Aug 1;20(8):660-669. doi: 10.1093/ijnp/pyx042.
Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated.
Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry.
Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats.
Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens.
在药物成瘾和强迫行为的临床前模型中观察到的行为敏感化的一个指标是对相同刺激的运动活动增加。重复给予二氢麦角胺(D2/D3 多巴胺激动剂)可诱导运动敏感化。κ 阿片受体激动剂 U69593 的共同给药增强和加速了这种效应。κ 阿片受体增强二氢麦角胺诱导的运动敏感化的机制仍有待阐明。
在小鼠脑切片和大鼠突触前突触体中进行免疫荧光解剖研究,以揭示伏隔核中 κ 阿片受体和 D2R 的前突触和后突触共定位。通过微透析和快速扫描循环伏安法评估 U69593 和二氢麦角胺重复处理的大鼠伏隔核中紧张性和相位性多巴胺释放。
解剖学数据显示,κ 阿片受体和 D2R 在伏隔核的中脑多巴胺神经元的后突触共定位,并且最高的前突触共定位发生在相同的多巴胺末端。在二氢麦角胺和 U69593-二氢麦角胺处理的大鼠中观察到多巴胺水平显著降低,解释了 D2R 的敏感化。与重复二氢麦角胺处理的大鼠相比,κ 阿片受体和 D2R 对电诱发多巴胺释放的前突触抑制更快。
κ 阿片受体和 D2R 的前突触和后突触共定位支持 κ 阿片受体增强 D2R 抑制性自身受体功能和 D2R 对传出中脑多巴胺神经元的抑制作用的作用。κ 阿片受体的共同激活通过有助于减少伏隔核中的多巴胺释放,加速 D2R 的敏感化。