TC Jenkins Department of Biophysics, Johns Hopkins University, 3400 N Charles St., Baltimore, Maryland 21218, USA.
J Chem Phys. 2021 May 21;154(19):194101. doi: 10.1063/5.0045867.
Protein assembly is often studied in a three-dimensional solution, but a significant fraction of binding events involve proteins that can reversibly bind and diffuse along a two-dimensional surface. In a recent study, we quantified how proteins can exploit the reduced dimensionality of the membrane to trigger complex formation. Here, we derive a single expression for the characteristic timescale of this multi-step assembly process, where the change in dimensionality renders rates and concentrations effectively time-dependent. We find that proteins can accelerate dimer formation due to an increase in relative concentration, driving more frequent collisions, which often win out over slow-downs due to diffusion. Our model contains two protein populations that dimerize with one another and use a distinct site to bind membrane lipids, creating a complex reaction network. However, by identifying two major rate-limiting pathways to reach an equilibrium steady-state, we derive an excellent approximation for the mean first passage time when lipids are in abundant supply. Our theory highlights how the "sticking rate" or effective adsorption coefficient of the membrane is central in controlling timescales. We also derive a corrected localization rate to quantify how the geometry of the system and diffusion can reduce rates of membrane localization. We validate and test our results using kinetic and particle-based reaction-diffusion simulations. Our results establish how the speed of key assembly steps can shift by orders-of-magnitude when membrane localization is possible, which is critical to understanding mechanisms used in cells.
蛋白质组装通常在三维溶液中进行研究,但很大一部分结合事件涉及可以可逆地结合并沿着二维表面扩散的蛋白质。在最近的一项研究中,我们量化了蛋白质如何利用膜的低维性来触发复杂的形成。在这里,我们推导出了一个单一的表达式,用于描述这个多步骤组装过程的特征时间尺度,其中维度的变化使速率和浓度实际上是时间依赖的。我们发现,由于相对浓度的增加,蛋白质可以加速二聚体的形成,从而导致更频繁的碰撞,这往往胜过由于扩散导致的减速。我们的模型包含两个彼此二聚化并使用不同位点结合膜脂的蛋白质群体,形成了一个复杂的反应网络。然而,通过确定达到平衡稳态的两个主要限速途径,我们推导出了在脂质供应充足时达到平均首次通过时间的极好近似。我们的理论强调了膜的“黏附率”或有效吸附系数在控制时间尺度方面的重要性。我们还推导出了一个修正的定位速率来量化系统的几何形状和扩散如何降低膜定位的速率。我们使用动力学和基于粒子的反应-扩散模拟来验证和测试我们的结果。我们的结果表明,当膜定位成为可能时,关键组装步骤的速度可以发生数量级的变化,这对于理解细胞中使用的机制至关重要。