LaRese Taylor P, Yan Yan, Eipper Betty A, Mains Richard E
Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA.
Departments of Neuroscience and Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030-3401, USA.
BMC Neurosci. 2017 May 23;18(1):45. doi: 10.1186/s12868-017-0363-2.
Mice lacking Kalirin-7 (Kal7), a Rho GDP/GTP exchange factor, self-administer cocaine at a higher rate than wildtype mice, and show an exaggerated locomotor response to experimenter-administered cocaine. Kal7, which localizes to post-synaptic densities at glutamatergic synapses, interacts directly with the GluN2B subunit of the N-methyl-D-aspartate (NMDA; GluN) receptor. Consistent with these observations, Kal7 plays an essential role in NMDA receptor dependent long term potentiation and depression, and glutamatergic transmission plays a key role in the response to chronic cocaine. A number of genetic studies have implicated altered Kalirin expression in schizophrenia and other disorders such as Alzheimer's Disease.
A comparison of the effects of experimenter-administered cocaine on mice lacking all Kalirin isoforms to its effects on mice lacking only Kalirin-7 identified Kal7 as the key isoform whose deletion produces exaggerated locomotor responses to cocaine. Pretreatment of Kal7 mice with a low dose of ifenprodil, a selective GluN2B antagonist, eliminated their enhanced locomotor response to cocaine, revealing an important role for GluN2B in this behavior. Selective knockout of Kalirin in dopamine transporter expressing neurons produced a transient enhancement of cocaine-induced locomotion, while knockout of Kalirin in Drd1a- or Drd2-dopamine receptor expressing neurons was without effect. As observed in Kalirin global knockout mice, eliminating Kalirin expression in Drd2-expressing neurons increased exploratory behavior in the elevated zero maze, an effect eliminated by pretreatment with ifenprodil.
The cocaine-sensitive neuronal pathways which are most sensitive to altered Kalirin function may be the pathways most dependent on GluN2B and Drd2.
缺乏Rho GDP / GTP交换因子卡里林-7(Kal7)的小鼠比野生型小鼠以更高的频率自我给药可卡因,并且对实验者给予的可卡因表现出夸张的运动反应。定位于谷氨酸能突触后突触密度的Kal7直接与N-甲基-D-天冬氨酸(NMDA;GluN)受体的GluN2B亚基相互作用。与这些观察结果一致,Kal7在NMDA受体依赖性长时程增强和抑制中起重要作用,并且谷氨酸能传递在对慢性可卡因的反应中起关键作用。一些遗传学研究表明卡里林表达改变与精神分裂症和其他疾病如阿尔茨海默病有关。
将实验者给予可卡因对缺乏所有卡里林亚型的小鼠的影响与其对仅缺乏卡里林-7的小鼠的影响进行比较,确定Kal7是关键亚型,其缺失会产生对可卡因的夸张运动反应。用低剂量的ifenprodil(一种选择性GluN2B拮抗剂)预处理Kal7小鼠消除了它们对可卡因增强的运动反应,揭示了GluN2B在这种行为中的重要作用。在表达多巴胺转运体的神经元中选择性敲除卡里林会导致可卡因诱导的运动短暂增强,而在表达Drd1a或Drd2多巴胺受体的神经元中敲除卡里林则没有效果。如在卡里林全球敲除小鼠中观察到的那样,消除表达Drd2的神经元中的卡里林表达会增加高架零迷宫中的探索行为,这种效果可通过ifenprodil预处理消除。
对卡里林功能改变最敏感的可卡因敏感神经元通路可能是最依赖GluN2B和Drd2 的通路。