Olaciregui-Ruiz Igor, Rozendaal Roel, van Oers René F M, Mijnheer Ben, Mans Anton
Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
Department of Radiation Oncology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
Phys Med. 2017 May;37:49-57. doi: 10.1016/j.ejmp.2017.04.016. Epub 2017 Apr 21.
At our institute, a transit back-projection algorithm is used clinically to reconstruct in vivo patient and in phantom 3D dose distributions using EPID measurements behind a patient or a polystyrene slab phantom, respectively. In this study, an extension to this algorithm is presented whereby in air EPID measurements are used in combination with CT data to reconstruct 'virtual' 3D dose distributions. By combining virtual and in vivo patient verification data for the same treatment, patient-related errors can be separated from machine, planning and model errors.
The virtual back-projection algorithm is described and verified against the transit algorithm with measurements made behind a slab phantom, against dose measurements made with an ionization chamber and with the OCTAVIUS 4D system, as well as against TPS patient data. Virtual and in vivo patient dose verification results are also compared.
Virtual dose reconstructions agree within 1% with ionization chamber measurements. The average γ-pass rate values (3% global dose/3mm) in the 3D dose comparison with the OCTAVIUS 4D system and the TPS patient data are 98.5±1.9%(1SD) and 97.1±2.9%(1SD), respectively. For virtual patient dose reconstructions, the differences with the TPS in median dose to the PTV remain within 4%.
Virtual patient dose reconstruction makes pre-treatment verification based on deviations of DVH parameters feasible and eliminates the need for phantom positioning and re-planning. Virtual patient dose reconstructions have additional value in the inspection of in vivo deviations, particularly in situations where CBCT data is not available (or not conclusive).
在我们研究所,临床上使用一种传输反投影算法,分别利用患者后方或聚苯乙烯平板模体后方的电子射野影像装置(EPID)测量值,来重建体内患者和模体的三维剂量分布。在本研究中,提出了该算法的一种扩展,即结合空气中的EPID测量值与CT数据来重建“虚拟”三维剂量分布。通过将同一治疗的虚拟和体内患者验证数据相结合,可以将与患者相关的误差与机器、计划和模型误差区分开来。
描述了虚拟反投影算法,并针对平板模体后方测量的传输算法、电离室剂量测量、OCTAVIUS 4D系统剂量测量以及治疗计划系统(TPS)患者数据进行了验证。还比较了虚拟和体内患者剂量验证结果。
虚拟剂量重建与电离室测量值的偏差在1%以内。与OCTAVIUS 4D系统和TPS患者数据进行三维剂量比较时,平均γ通过率值(全局剂量3%/3mm)分别为98.5±1.9%(1标准差)和97.1±2.9%(1标准差)。对于虚拟患者剂量重建,与TPS相比,计划靶体积(PTV)的中位剂量差异保持在4%以内。
虚拟患者剂量重建使基于剂量体积直方图(DVH)参数偏差的治疗前验证变得可行,并消除了模体定位和重新计划的需要。虚拟患者剂量重建在检查体内偏差方面具有额外价值,特别是在无法获得锥束CT(CBCT)数据(或数据不确凿)的情况下。