Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.
Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599.
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4556-E4563. doi: 10.1073/pnas.1621227114. Epub 2017 May 23.
How proteins sense and navigate the cellular interior to find their functional partners remains poorly understood. An intriguing aspect of this search is that it relies on diffusive encounters with the crowded cellular background, made up of protein surfaces that are largely nonconserved. The question is then if/how this protein search is amenable to selection and biological control. To shed light on this issue, we examined the motions of three evolutionary divergent proteins in the cytoplasm by in-cell NMR. The results show that the diffusive in-cell motions, after all, follow simplistic physical-chemical rules: The proteins reveal a common dependence on () net charge density, () surface hydrophobicity, and () the electric dipole moment. The bacterial protein is here biased to move relatively freely in the bacterial interior, whereas the human counterparts more easily stick. Even so, the in-cell motions respond predictably to surface mutation, allowing us to tune and intermix the protein's behavior at will. The findings show how evolution can swiftly optimize the diffuse background of protein encounter complexes by just single-point mutations, and provide a rational framework for adjusting the cytoplasmic motions of individual proteins, e.g., for rescuing poor in-cell NMR signals and for optimizing protein therapeutics.
蛋白质如何感知和在细胞内部导航以找到其功能伙伴仍然知之甚少。这种搜索的一个有趣方面是,它依赖于与拥挤的细胞背景的扩散接触,而这种背景主要由非保守的蛋白质表面组成。那么问题是,这种蛋白质搜索是否可以接受选择和生物控制。为了阐明这个问题,我们通过细胞内 NMR 研究了三种在细胞质中进化上不同的蛋白质的运动。结果表明,扩散的细胞内运动毕竟遵循简单的物理化学规则:蛋白质显示出对()净电荷密度、()表面疏水性和()偶极矩的共同依赖性。细菌蛋白在这里偏向于在细菌内部相对自由地移动,而人类对应物则更容易粘住。即便如此,细胞内的运动也可以对表面突变做出可预测的反应,使我们能够随心所欲地调整和混合蛋白质的行为。这些发现表明,进化如何仅通过单点突变就能迅速优化蛋白质相遇复合物的扩散背景,并为调整单个蛋白质的细胞质运动提供了合理的框架,例如,用于挽救不良的细胞内 NMR 信号和优化蛋白质治疗。