Suppr超能文献

五进制蛋白质相互作用的物理化学代码。

Physicochemical code for quinary protein interactions in .

机构信息

Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91 Stockholm, Sweden.

Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599.

出版信息

Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4556-E4563. doi: 10.1073/pnas.1621227114. Epub 2017 May 23.

Abstract

How proteins sense and navigate the cellular interior to find their functional partners remains poorly understood. An intriguing aspect of this search is that it relies on diffusive encounters with the crowded cellular background, made up of protein surfaces that are largely nonconserved. The question is then if/how this protein search is amenable to selection and biological control. To shed light on this issue, we examined the motions of three evolutionary divergent proteins in the cytoplasm by in-cell NMR. The results show that the diffusive in-cell motions, after all, follow simplistic physical-chemical rules: The proteins reveal a common dependence on () net charge density, () surface hydrophobicity, and () the electric dipole moment. The bacterial protein is here biased to move relatively freely in the bacterial interior, whereas the human counterparts more easily stick. Even so, the in-cell motions respond predictably to surface mutation, allowing us to tune and intermix the protein's behavior at will. The findings show how evolution can swiftly optimize the diffuse background of protein encounter complexes by just single-point mutations, and provide a rational framework for adjusting the cytoplasmic motions of individual proteins, e.g., for rescuing poor in-cell NMR signals and for optimizing protein therapeutics.

摘要

蛋白质如何感知和在细胞内部导航以找到其功能伙伴仍然知之甚少。这种搜索的一个有趣方面是,它依赖于与拥挤的细胞背景的扩散接触,而这种背景主要由非保守的蛋白质表面组成。那么问题是,这种蛋白质搜索是否可以接受选择和生物控制。为了阐明这个问题,我们通过细胞内 NMR 研究了三种在细胞质中进化上不同的蛋白质的运动。结果表明,扩散的细胞内运动毕竟遵循简单的物理化学规则:蛋白质显示出对()净电荷密度、()表面疏水性和()偶极矩的共同依赖性。细菌蛋白在这里偏向于在细菌内部相对自由地移动,而人类对应物则更容易粘住。即便如此,细胞内的运动也可以对表面突变做出可预测的反应,使我们能够随心所欲地调整和混合蛋白质的行为。这些发现表明,进化如何仅通过单点突变就能迅速优化蛋白质相遇复合物的扩散背景,并为调整单个蛋白质的细胞质运动提供了合理的框架,例如,用于挽救不良的细胞内 NMR 信号和优化蛋白质治疗。

相似文献

1
Physicochemical code for quinary protein interactions in .五进制蛋白质相互作用的物理化学代码。
Proc Natl Acad Sci U S A. 2017 Jun 6;114(23):E4556-E4563. doi: 10.1073/pnas.1621227114. Epub 2017 May 23.
5
Signal transduction pathway of TonB-dependent transporters.托恩B依赖性转运蛋白的信号转导途径。
Proc Natl Acad Sci U S A. 2007 Jan 9;104(2):513-8. doi: 10.1073/pnas.0609887104. Epub 2006 Dec 29.
8
A protein export pathway involving Escherichia coli porins.一种涉及大肠埃希菌通透酶的蛋白质输出途径。
Structure. 2012 Jul 3;20(7):1154-66. doi: 10.1016/j.str.2012.04.014. Epub 2012 May 31.
10
Intracellular pH modulates quinary structure.细胞内pH调节五级结构。
Protein Sci. 2015 Nov;24(11):1748-55. doi: 10.1002/pro.2765. Epub 2015 Aug 30.

引用本文的文献

1
Measurement of protein non-covalent interactions in buffer and cells.缓冲液和细胞中蛋白质非共价相互作用的测量。
Magn Reson Lett. 2024 Dec 6;5(2):200173. doi: 10.1016/j.mrl.2024.200173. eCollection 2025 May.
3
Enzymes in a human cytoplasm model organize into submetabolon complexes.人类细胞质模型中的酶会组织形成亚代谢物复合物。
Proc Natl Acad Sci U S A. 2025 Feb 4;122(5):e2414206122. doi: 10.1073/pnas.2414206122. Epub 2025 Jan 28.
5
Probing Electrostatic and Hydrophobic Associative Interactions in Cells.探究细胞中的静电和疏水缔合相互作用。
J Phys Chem B. 2024 Nov 7;128(44):10861-10869. doi: 10.1021/acs.jpcb.4c05990. Epub 2024 Oct 30.
6
Cellular location shapes quaternary structure of enzymes.细胞定位决定酶的四级结构。
Nat Commun. 2024 Oct 1;15(1):8505. doi: 10.1038/s41467-024-52662-2.
7
Electron transfer in the respiratory chain at low salinity.低盐度下呼吸链中的电子传递。
Nat Commun. 2024 Sep 19;15(1):8241. doi: 10.1038/s41467-024-52475-3.
8
Optimising in-cell NMR acquisition for nucleic acids.优化用于核酸的细胞内核磁共振采集
J Biomol NMR. 2024 Dec;78(4):249-264. doi: 10.1007/s10858-024-00448-5. Epub 2024 Aug 20.

本文引用的文献

2
Electrostatic Contributions to Protein Quinary Structure.静电作用对蛋白质五级结构的贡献。
J Am Chem Soc. 2016 Oct 12;138(40):13139-13142. doi: 10.1021/jacs.6b07323. Epub 2016 Oct 4.
3
Macromolecular Crowding In Vitro, In Vivo, and In Between.体外、体内及两者之间的大分子拥挤现象
Trends Biochem Sci. 2016 Nov;41(11):970-981. doi: 10.1016/j.tibs.2016.08.013. Epub 2016 Sep 23.
4
The Dark Matter of Biology.生物学的暗物质。
Biophys J. 2016 Sep 6;111(5):909-16. doi: 10.1016/j.bpj.2016.07.037.
7
In-cell thermodynamics and a new role for protein surfaces.细胞内热力学与蛋白质表面的新作用。
Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1725-30. doi: 10.1073/pnas.1518620113. Epub 2016 Jan 11.
10
Thermodynamics of protein destabilization in live cells.活细胞中蛋白质去稳定化的热力学
Proc Natl Acad Sci U S A. 2015 Oct 6;112(40):12402-7. doi: 10.1073/pnas.1511308112. Epub 2015 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验