Suppr超能文献

从混合磷酸钙/藻酸盐支架中递呈程序性血小板衍生生长因子 BB 和骨形态发生蛋白 2。

Programmed Platelet-Derived Growth Factor-BB and Bone Morphogenetic Protein-2 Delivery from a Hybrid Calcium Phosphate/Alginate Scaffold.

机构信息

1 Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania.

2 The McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.

出版信息

Tissue Eng Part A. 2017 Dec;23(23-24):1382-1393. doi: 10.1089/ten.TEA.2017.0027. Epub 2017 Jun 27.

Abstract

Bone tissue engineering requires the upregulation of several regenerative stages, including a critical early phase of angiogenesis. Previous studies have suggested that a sequential delivery of platelet-derived growth factor (PDGF) to bone morphogenetic protein-2 (BMP-2) could promote angiogenic tubule formation when delivered to in vitro cocultures of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs). However, it was previously unclear that this PDGF to BMP-2 delivery schedule will result in cell migration into the scaffolding system and affect the later expression of bone markers. Additionally, a controlled delivery system had not yet been engineered for programmed sequential presentation of this particular growth factor. By combining alginate matrices with calcium phosphate scaffolding, a programmed growth factor delivery schedule was achieved. Specifically, a combination of alginate microspheres, alginate hydrogels, and a novel blend of resorbable calcium phosphate-based cement (ReCaPP) was used. PDGF and BMP-2 were sequentially released from this hybrid calcium phosphate/alginate scaffold with the desired 3-day overlap in PDGF to BMP-2 delivery. Using a three-dimensional coculture model, we observed that this sequence of PDGF to BMP-2 delivery influenced both cellular infiltration and alkaline phosphatase (ALP) expression. It was found that the presence of early PDGF delivery increased the distance of cell infiltration into the calcium phosphate/alginate scaffolding in comparison to early BMP-2 delivery and simultaneous PDGF+BMP-2 delivery. It was also observed that hMSCs expressed a greater amount of ALP+ staining in response to scaffolds delivering the sequential PDGF to BMP-2 schedule, when compared with scaffolds delivering no growth factor, or PDGF alone. Importantly, hMSCs cultured with scaffolds releasing the PDGF to BMP-2 schedule showed similar amounts of ALP staining to hMSCs cultured with BMP-2 alone, suggesting that the sequential schedule of PDGF to BMP-2 presentation promotes differentiation of hMSCs toward an osteoblast phenotype while also increasing cellular infiltration of the scaffold.

摘要

骨组织工程需要上调几个再生阶段,包括血管生成的关键早期阶段。先前的研究表明,当将血小板衍生生长因子(PDGF)顺序递送至体外共培养的人脐静脉内皮细胞(HUVEC)和人骨髓间充质干细胞(hMSC)中时,骨形态发生蛋白-2(BMP-2)可促进血管生成管的形成。然而,先前不清楚这种 PDGF 到 BMP-2 的递药方案是否会导致细胞迁移到支架系统中,并影响后期骨标志物的表达。此外,尚未设计出用于程序性递呈这种特定生长因子的控释系统。通过将藻酸盐基质与磷酸钙支架相结合,实现了程序性生长因子递药方案。具体来说,使用了藻酸盐微球、藻酸盐水凝胶和新型可吸收磷酸钙基水泥(ReCaPP)的混合物。PDGF 和 BMP-2 从这种混合的磷酸钙/藻酸盐支架中顺序释放,PDGF 到 BMP-2 递药之间有 3 天的重叠。使用三维共培养模型,我们观察到这种 PDGF 到 BMP-2 递药顺序既影响细胞浸润又影响碱性磷酸酶(ALP)表达。结果发现,与早期 BMP-2 递药和 PDGF+BMP-2 同时递药相比,早期 PDGF 递药增加了细胞渗透到磷酸钙/藻酸盐支架中的距离。还观察到,与未递送生长因子或仅递送 PDGF 的支架相比,响应递药顺序为 PDGF 到 BMP-2 的支架,hMSC 表达了更多的 ALP+染色。重要的是,用释放 PDGF 到 BMP-2 方案的支架培养的 hMSC 显示出与单独用 BMP-2 培养的 hMSC 相似的 ALP 染色量,这表明 PDGF 到 BMP-2 递呈的顺序方案可促进 hMSC 向成骨细胞表型分化,同时增加支架的细胞浸润。

相似文献

1
Programmed Platelet-Derived Growth Factor-BB and Bone Morphogenetic Protein-2 Delivery from a Hybrid Calcium Phosphate/Alginate Scaffold.
Tissue Eng Part A. 2017 Dec;23(23-24):1382-1393. doi: 10.1089/ten.TEA.2017.0027. Epub 2017 Jun 27.
5
Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
Acta Biomater. 2011 Aug;7(8):3178-86. doi: 10.1016/j.actbio.2011.04.008. Epub 2011 Apr 27.
9
Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds.
PLoS One. 2014 Aug 1;9(8):e104061. doi: 10.1371/journal.pone.0104061. eCollection 2014.
10
3D printed TCP-based scaffold incorporating VEGF-loaded PLGA microspheres for craniofacial tissue engineering.
Dent Mater. 2017 Nov;33(11):1205-1216. doi: 10.1016/j.dental.2017.06.016. Epub 2017 Sep 4.

引用本文的文献

2
Cell communication and relevant signaling pathways in osteogenesis-angiogenesis coupling.
Bone Res. 2025 Apr 7;13(1):45. doi: 10.1038/s41413-025-00417-0.
3
ROS-Activated Nanohydrogel Scaffolds with Multi-Factors Controlled Release for Targeted Dual-Lineage Repair of Osteochondral Defects.
Adv Sci (Weinh). 2025 May;12(20):e2412410. doi: 10.1002/advs.202412410. Epub 2025 Mar 29.
4
Programmable biomaterials for bone regeneration.
Mater Today Bio. 2024 Oct 9;29:101296. doi: 10.1016/j.mtbio.2024.101296. eCollection 2024 Dec.
5
Novel Strategies for Spatiotemporal and Controlled BMP-2 Delivery in Bone Tissue Engineering.
Cell Transplant. 2024 Jan-Dec;33:9636897241276733. doi: 10.1177/09636897241276733.
7
Application of single and cooperative different delivery systems for the treatment of intervertebral disc degeneration.
Front Bioeng Biotechnol. 2022 Nov 14;10:1058251. doi: 10.3389/fbioe.2022.1058251. eCollection 2022.
9
Effect of Angiogenesis in Bone Tissue Engineering.
Ann Biomed Eng. 2022 Aug;50(8):898-913. doi: 10.1007/s10439-022-02970-9. Epub 2022 May 7.

本文引用的文献

2
Porous calcium phosphate-poly (lactic-co-glycolic) acid composite bone cement: A viable tunable drug delivery system.
Mater Sci Eng C Mater Biol Appl. 2016 Feb;59:92-101. doi: 10.1016/j.msec.2015.09.081. Epub 2015 Sep 26.
3
Engineering growth factors for regenerative medicine applications.
Acta Biomater. 2016 Jan;30:1-12. doi: 10.1016/j.actbio.2015.11.007. Epub 2015 Nov 7.
4
Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells.
Bone Res. 2014 Sep 30;2:14017. doi: 10.1038/boneres.2014.17. eCollection 2014.
5
The scope and sequence of growth factor delivery for vascularized bone tissue regeneration.
J Control Release. 2015 Dec 10;219:129-140. doi: 10.1016/j.jconrel.2015.08.004. Epub 2015 Aug 8.
6
7
Extracellular matrix-inspired growth factor delivery systems for bone regeneration.
Adv Drug Deliv Rev. 2015 Nov 1;94:41-52. doi: 10.1016/j.addr.2015.04.007. Epub 2015 Apr 17.
8
Extracellular matrix and growth factor engineering for controlled angiogenesis in regenerative medicine.
Front Bioeng Biotechnol. 2015 Apr 1;3:45. doi: 10.3389/fbioe.2015.00045. eCollection 2015.
9
Bioluminescent and micro-computed tomography imaging of bone repair induced by fibrin-binding growth factors.
Acta Biomater. 2014 Oct;10(10):4377-89. doi: 10.1016/j.actbio.2014.05.028. Epub 2014 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验